
Tutorial 1. Introduction to MOA
{M}assive {O}nline {A}nalysis

Albert Bifet and Richard Kirkby

March 2012



1 Getting Started

This tutorial is a basic introduction to MOA. Massive Online Analysis
(MOA) is a software environment for implementing algorithms and run-
ning experiments for online learning from evolving data streams.

We suppose that MOA is installed in your system. Start a graphical
user interface for configuring and running tasks with the command:

java -cp moa.jar -javaagent:sizeofag.jar moa.gui.GUI

Figure 1: MOA Graphical User Interface

Click ’Configure’ to set up a task, when ready click to launch a task
click ’Run’. Several tasks can be run concurrently. Click on different tasks
in the list and control them using the buttons below. If textual output of a
task is available it will be displayed in the middle of the GUI, and can be
saved to disk.

Note that the command line text box displayed at the top of the win-
dow represents textual commands that can be used to run tasks on the
command line. The text can be selected then copied onto the clipboard.
In the bottom of the GUI there is a graphical display of the results. It is
possible to compare the results of two different tasks: the current task is
displayed in red, and the selected previously is in blue.

1



Figure 2: The data stream classification cycle

2 The Classification Graphical User Interface

We start comparing the accuracy of two classifiers. First, we explain briefly
two different data stream evaluations.

2.1 Data streams Evaluation

The most significant requirements for a data stream setting are the follow-
ing:

Requirement 1 Process an example at a time, and inspect it only once (at
most)

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time

Figure 2 illustrates the typical use of a data stream classification algo-
rithm, and how the requirements fit in a repeating cycle:

2



1. The algorithm is passed the next available example from the stream
(requirement 1).

2. The algorithm processes the example, updating its data structures.
It does so without exceeding the memory bounds set on it (require-
ment 2), and as quickly as possible (requirement 3).

3. The algorithm is ready to accept the next example. On request it is
able to predict the class of unseen examples (requirement 4).

In traditional batch learning the problem of limited data is overcome
by analyzing and averaging multiple models produced with different ran-
dom arrangements of training and test data. In the stream setting the
problem of (effectively) unlimited data poses different challenges. One
solution involves taking snapshots at different times during the induction
of a model to see how much the model improves.

When considering what procedure to use in the data stream setting,
one of the unique concerns is how to build a picture of accuracy over time.
Two main approaches arise:

• Holdout: When traditional batch learning reaches a scale where cross-
validation is too time consuming, it is often accepted to instead mea-
sure performance on a single holdout set. This is most useful when
the division between train and test sets have been pre-defined, so
that results from different studies can be directly compared.

• Interleaved Test-Then-Train or Prequential: Each individual exam-
ple can be used to test the model before it is used for training, and
from this the accuracy can be incrementally updated. When inten-
tionally performed in this order, the model is always being tested
on examples it has not seen. This scheme has the advantage that no
holdout set is needed for testing, making maximum use of the avail-
able data. It also ensures a smooth plot of accuracy over time, as
each individual example will become increasingly less significant to
the overall average.

Holdout evaluation gives a more accurate estimation of the accuracy
of the classifier on more recent data. However, it requires recent test data
that it is difficult to obtain for real datasets. Gama et al. propose to use a
forgetting mechanism for estimating holdout accuracy using prequential
accuracy: a sliding window of sizewwith the most recent observations, or
fading factors that weigh observations using a decay factor α. The output

3



of the two mechanisms is very similar (every window of size w0 may be
approximated by some decay factor α0).

As data stream classification is a relatively new field, such evaluation
practices are not nearly as well researched and established as they are in
the traditional batch setting.

2.2 Exercises

To familiarize yourself with the functions discussed so far, please do the
following two exercises. The solutions to these and other exercises in this
tutorial are given at the end.

Exercise 1 Compare the accuracy of the Hoeffding Tree with the Naive Bayes
classifier, for a RandomTreeGenerator stream of 1,000,000 instances using Inter-
leaved Test-Then-Train evaluation. Use for all exercises a sample frequency of
10, 000.

Exercise 2 Compare and discuss the accuracy for the same stream of the previous
exercise using three different evaluations with a Hoeffding Tree:

• Periodic Held Out with 1,000 instances for testing

• Interleaved Test Then Train

• Prequential with a sliding window of 1,000 instances.

2.3 Drift Stream Generators

MOA streams are build using generators, reading ARFF files, joining sev-
eral streams, or filtering streams. MOA streams generators allow to simu-
late potentially infinite sequence of data.

Two streams evolving on time are:

• Rotating Hyperplane

• Random RBF Generator

To model concept drift we only have to set up the drift parameter of
the stream.

We can model concept drift also joining several streams. MOA models
a concept drift event as a weighted combination of two pure distributions
that characterizes the target concepts before and after the drift. MOA uses
the sigmoid function, as an elegant and practical solution to define the

4



t

f(t)

f(t)
α

α

t0

W

0.5

1

Figure 3: A sigmoid function f(t) = 1/(1+ e−s(t−t0)).

probability that every new instance of the stream belongs to the new con-
cept after the drift.

We see from Figure 3 that the sigmoid function

f(t) = 1/(1+ e−s(t−t0))

has a derivative at the point t0 equal to f ′(t0) = s/4. The tangent of angle
α is equal to this derivative, tanα = s/4. We observe that tanα = 1/W,
and as s = 4 tanα then s = 4/W. So the parameter s in the sigmoid gives
the length of W and the angle α. In this sigmoid model we only need
to specify two parameters : t0 the point of change, and W the length of
change. Note that for any positive real number β

f(t0 + β ·W) = 1− f(t0 − β ·W),

and that f(t0+β·W) and f(t0−β·W) are constant values that don’t depend
on t0 andW:

f(t0 +W/2) = 1− f(t0 −W/2) = 1/(1+ e
−2) ≈ 88.08%

f(t0 +W) = 1− f(t0 −W) = 1/(1+ e−4) ≈ 98.20%

f(t0 + 2W) = 1− f(t0 − 2W) = 1/(1+ e−8) ≈ 99.97%

Definition 1 Given two data streams a, b, we define c = a ⊕Wt0 b as the data
stream built joining the two data streams a and b, where t0 is the point of change,
W is the length of change and

5



• Pr[c(t) = a(t)] = e−4(t−t0)/W/(1+ e−4(t−t0)/W)

• Pr[c(t) = b(t)] = 1/(1+ e−4(t−t0)/W).

Example:

ConceptDriftStream -s (generators.AgrawalGenerator -f 7)
-d (generators.AgrawalGenerator -f 2) -w 1000000 -p 900000

ConceptDriftStream parameters:

• -s : Stream

• -d : Concept drift Stream

• -p : Central position of concept drift change

• -w : Width of concept drift change

2.4 Exercises

Exercise 3 Compare the accuracy of the Hoeffding Tree with the Naive Bayes
classifier, for a RandomRBFGenerator stream of 1,000,000 instances with speed
change of 0,001 using Interleaved Test-Then-Train evaluation.

Exercise 4 Compare the accuracy for the same stream of the previous exercise
using three different classifiers:

• Hoeffding Tree with Majority Class at the leaves

• Hoeffding Adaptive Tree

• OzaBagAdwin with 10 HoeffdingTree

3 Using the command line

An easy way to use the command line, is to copy and paste the text in the
Configuration line of the Graphical User Interface.

For example, suppose we want to process the task

EvaluatePrequential -l trees.HoeffdingTree -i 1000000 -w 10000

using the command line. We simply write

java -cp moa.jar -javaagent:sizeofag.jar moa.DoTask \
"EvaluatePrequential -l trees.HoeffdingTree -i 1000000 -w 10000"

Note that some parameters are missing, since they use default values.

6



3.1 Learning and Evaluating Models

The moa.DoTask class is the main class for running tasks on the com-
mand line. It will accept the name of a task followed by any appropriate
parameters. The first task used is the LearnModel task. The -l parame-
ter specifies the learner, in this case the HoeffdingTree class. The -s pa-
rameter specifies the stream to learn from, in this case generators.Wave-
formGenerator is specified, which is a data stream generator that pro-
duces a three-class learning problem of identifying three types of wave-
form. The -m option specifies the maximum number of examples to train
the learner with, in this case one million examples. The -O option specifies
a file to output the resulting model to:

java -cp moa.jar -javaagent:sizeofag.jar moa.DoTask \
LearnModel -l trees.HoeffdingTree \
-s generators.WaveformGenerator -m 1000000 -O model1.moa

This will create a file named model1.moa that contains the decision
stump model that was induced during training.

The next example will evaluate the model to see how accurate it is on
a set of examples that are generated using a different random seed. The
EvaluateModel task is given the parameters needed to load the model
produced in the previous step, generate a new waveform stream with a
random seed of 2, and test on one million examples:

java -cp moa.jar -javaagent:sizeofag.jar moa.DoTask \
"EvaluateModel -m file:model1.moa \
-s (generators.WaveformGenerator -i 2) -i 1000000"

This is the first example of nesting parameters using brackets. Quotes
have been added around the description of the task, otherwise the operat-
ing system may be confused about the meaning of the brackets.

After evaluation the following statistics are output:

classified instances = 1,000,000
classifications correct (percent) = 84.474
Kappa Statistic (percent) = 76.711

Note the the above two steps can be achieved by rolling them into one,
avoiding the need to create an external file, as follows:

7



java -cp moa.jar -javaagent:sizeofag.jar moa.DoTask \
"EvaluateModel -m (LearnModel -l trees.HoeffdingTree \
-s generators.WaveformGenerator -m 1000000) \
-s (generators.WaveformGenerator -i 2) -i 1000000"

The task EvaluatePeriodicHeldOutTest will train a model while
taking snapshots of performance using a held-out test set at periodic inter-
vals. The following command creates a comma separated values file, training
the HoeffdingTree classifier on the WaveformGenerator data, using
the first 100 thousand examples for testing, training on a total of 100 mil-
lion examples, and testing every one million examples:

java -cp moa.jar -javaagent:sizeofag.jar moa.DoTask \
"EvaluatePeriodicHeldOutTest -l trees.HoeffdingTree \
-s generators.WaveformGenerator \
-n 100000 -i 10000000 -f 1000000" > dsresult.csv

3.2 Exercises

Exercise 5 Repeat the experiments of exercises 1 and 2 using the command line.

Exercise 6 Compare accuracy and RAM-Hours needed using a prequential eval-
uation (sliding window of 1,000 instances) of 1,000,000 instances for a Random
Radius Based Function stream with speed of change 0,001 using the following
methods:

• OzaBag with 10 HoeffdingTree

• OzaBagAdwin with 10 HoeffdingTree

• LeveragingBag with 10 HoeffdingTree

4 Answers To Exercises

1. Naive Bayes: 73.63% Hoeffding Tree : 94.45%

2. • Periodic Held Out with 1,000 instances for testing :96.5%

• Interleaved Test Then Train : 94.45%

• Prequential with a sliding window of 1,000 instances: 96.7%.

3. Naive Bayes: 53.14% Hoeffding Tree : 57.60%

8



4. • Hoeffding Tree with Majority Class at Leaves: 51.71%

• Hoeffding Adaptive Tree: 65.28%

• OzaBagAdwin with 10 HoeffdingTree: 67.23%

5. • EvaluateInterleavedTestThenTrain -i 1000000

• EvaluateInterleavedTestThenTrain -l trees.HoeffdingTree
-i 1000000

• EvaluatePeriodicHeldOutTest -n 1000 -i 1000000

• EvaluateInterleavedTestThenTrain -l trees.HoeffdingTree
-i 1000000

• EvaluatePrequential -l trees.HoeffdingTree -i 1000000

6. • OzaBag with 10 HoeffdingTree:

– 57.4% Accuracy, 4 · 10−4 RAM-Hours

• OzaBagAdwin with 10 HoeffdingTree:

– 71.5% Accuracy, 2.93 · 10−6 RAM-Hours

• LeveragingBag with 10 HoeffdingTree:

– 82.9% Accuracy, 1.25 · 10−4 RAM-Hours

9


