public class FIMTDD extends HoeffdingTree implements Regressor
Modifier and Type | Class and Description |
---|---|
static interface |
FIMTDD.AdaptationCompatibleNode
A new interface for nodes to be used in an adaptive setting
|
static class |
FIMTDD.FIMTDDActiveLearningNode
A modified ActiveLearningNode that uses a Perceptron as the leaf node
model, and ensures that the class values sent to the attribute observers
are not truncated to ints if regression is being performed
|
static class |
FIMTDD.FIMTDDPerceptron
A Perceptron classifier modified to conform to the specifications of Ikonomovska et al.
|
static class |
FIMTDD.FIMTDDSplitNode
A modified SplitNode method implementing the extra information regarding it's parent,
and the ability to track the error rate and perform Page-Hinckley tests
|
HoeffdingTree.ActiveLearningNode, HoeffdingTree.FoundNode, HoeffdingTree.InactiveLearningNode, HoeffdingTree.LearningNode, HoeffdingTree.LearningNodeNB, HoeffdingTree.LearningNodeNBAdaptive, HoeffdingTree.Node, HoeffdingTree.SplitNode
Modifier and Type | Field and Description |
---|---|
protected boolean |
Adaptable |
FloatOption |
AlternateTreeFadingFactorOption |
IntOption |
AlternateTreeTimeOption |
IntOption |
AlternateTreeTMinOption |
protected double |
initLearnRate |
FlagOption |
learningRatio_Decay_or_Const_Option |
FloatOption |
learningRatioOption |
protected double |
learnRateDecay |
protected ArrayList<FIMTDD.FIMTDDSplitNode> |
nodesToAdapt |
FloatOption |
PageHinckleyAlphaOption |
IntOption |
PageHinckleyThresholdOption |
protected DoubleVector |
splitRatioStatistics |
activeLeafByteSizeEstimate, activeLeafNodeCount, binarySplitsOption, byteSizeEstimateOverheadFraction, decisionNodeCount, gracePeriodOption, growthAllowed, inactiveLeafByteSizeEstimate, inactiveLeafNodeCount, leafpredictionOption, maxByteSizeOption, memoryEstimatePeriodOption, nbThresholdOption, nominalEstimatorOption, noPrePruneOption, numericEstimatorOption, removePoorAttsOption, splitConfidenceOption, splitCriterionOption, stopMemManagementOption, tieThresholdOption, treeRoot
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
FIMTDD() |
Modifier and Type | Method and Description |
---|---|
protected void |
FIMTDD_attemptToSplit(FIMTDD.FIMTDDActiveLearningNode node,
FIMTDD.FIMTDDSplitNode parent,
int parentIndex)
Method used to split a leaf node and generate child nodes, if appropriate
|
String |
getPurposeString()
Gets the purpose of this object
|
protected FIMTDD.FIMTDDActiveLearningNode |
newLearningNode()
Return an empty FIMTDDActiveLearningNode
|
protected FIMTDD.FIMTDDActiveLearningNode |
newLearningNode(double[] initialClassObservations)
Return a new FIMTDDActiveLearningNode using the initial class observations
|
protected FIMTDD.FIMTDDSplitNode |
newSplitNode(InstanceConditionalTest splitTest,
double[] classObservations)
Return a new FIMTDDSplitNode
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Method for updating (training) the model using a new instance
|
activateLearningNode, attemptToSplit, calcByteSize, computeHoeffdingBound, deactivateAllLeaves, deactivateLearningNode, enforceTrackerLimit, estimateModelByteSizes, findLearningNodes, findLearningNodes, getModelDescription, getModelMeasurementsImpl, getVotesForInstance, isRandomizable, measureByteSize, measureTreeDepth, newNominalClassObserver, newNumericClassObserver, newSplitNode, resetLearningImpl
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
protected DoubleVector splitRatioStatistics
protected ArrayList<FIMTDD.FIMTDDSplitNode> nodesToAdapt
protected boolean Adaptable
protected double initLearnRate
protected double learnRateDecay
public FloatOption PageHinckleyAlphaOption
public IntOption PageHinckleyThresholdOption
public FloatOption AlternateTreeFadingFactorOption
public IntOption AlternateTreeTMinOption
public IntOption AlternateTreeTimeOption
public FloatOption learningRatioOption
public FlagOption learningRatio_Decay_or_Const_Option
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class HoeffdingTree
public void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl
in class HoeffdingTree
inst
- the instance to be used for trainingprotected void FIMTDD_attemptToSplit(FIMTDD.FIMTDDActiveLearningNode node, FIMTDD.FIMTDDSplitNode parent, int parentIndex)
protected FIMTDD.FIMTDDActiveLearningNode newLearningNode()
newLearningNode
in class HoeffdingTree
protected FIMTDD.FIMTDDActiveLearningNode newLearningNode(double[] initialClassObservations)
newLearningNode
in class HoeffdingTree
protected FIMTDD.FIMTDDSplitNode newSplitNode(InstanceConditionalTest splitTest, double[] classObservations)
newSplitNode
in class HoeffdingTree
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.