public class NaiveBayes extends AbstractClassifier
Performs classic bayesian prediction while making naive assumption that
all inputs are independent.
Naive Bayes is a classifier algorithm known
for its simplicity and low computational cost. Given n different classes, the
trained Naive Bayes classifier predicts for every unlabelled instance I the
class C to which it belongs with high accuracy.
Parameters:
| Modifier and Type | Field and Description |
|---|---|
protected AutoExpandVector<AttributeClassObserver> |
attributeObservers |
protected DoubleVector |
observedClassDistribution |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
NaiveBayes() |
| Modifier and Type | Method and Description |
|---|---|
static double[] |
doNaiveBayesPrediction(weka.core.Instance inst,
DoubleVector observedClassDistribution,
AutoExpandVector<AttributeClassObserver> attributeObservers) |
static double[] |
doNaiveBayesPredictionLog(weka.core.Instance inst,
DoubleVector observedClassDistribution,
AutoExpandVector<AttributeClassObserver> observers,
AutoExpandVector<AttributeClassObserver> observers2) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
manageMemory(int currentByteSize,
int maxByteSize) |
protected AttributeClassObserver |
newNominalClassObserver() |
protected AttributeClassObserver |
newNumericClassObserver() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizeprotected DoubleVector observedClassDistribution
protected AutoExpandVector<AttributeClassObserver> attributeObservers
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingpublic double[] getVotesForInstance(weka.core.Instance inst)
Classifierinst - the instance to be classifiedprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic boolean isRandomizable()
Classifierprotected AttributeClassObserver newNominalClassObserver()
protected AttributeClassObserver newNumericClassObserver()
public static double[] doNaiveBayesPrediction(weka.core.Instance inst,
DoubleVector observedClassDistribution,
AutoExpandVector<AttributeClassObserver> attributeObservers)
public static double[] doNaiveBayesPredictionLog(weka.core.Instance inst,
DoubleVector observedClassDistribution,
AutoExpandVector<AttributeClassObserver> observers,
AutoExpandVector<AttributeClassObserver> observers2)
public void manageMemory(int currentByteSize,
int maxByteSize)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.