- AbruptChangeGenerator - Class in moa.streams.generators.cd
-
- AbruptChangeGenerator() - Constructor for class moa.streams.generators.cd.AbruptChangeGenerator
-
- AbstractAMRules - Class in moa.classifiers.rules
-
- AbstractAMRules() - Constructor for class moa.classifiers.rules.AbstractAMRules
-
- AbstractC - Class in moa.clusterers.outliers.AbstractC
-
- AbstractC() - Constructor for class moa.clusterers.outliers.AbstractC.AbstractC
-
- AbstractCBase - Class in moa.clusterers.outliers.AbstractC
-
- AbstractCBase() - Constructor for class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- AbstractChangeDetector - Class in moa.classifiers.core.driftdetection
-
Abstract Change Detector.
- AbstractChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
- AbstractClassifier - Class in moa.classifiers
-
Abstract Classifier.
- AbstractClassifier() - Constructor for class moa.classifiers.AbstractClassifier
-
Creates an classifier and setups the random seed option
if the classifier is randomizable.
- AbstractClassOption - Class in moa.options
-
Abstract class option.
- AbstractClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.AbstractClassOption
-
Creates a new instance of an abstract option given its class name,
command line interface text, its purpose, its class type and its default
command line interface text.
- AbstractClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.AbstractClassOption
-
Creates a new instance of an abstract option given its class name,
command line interface text, its purpose, its class type, default
command line interface text, and its null text.
- AbstractClusterer - Class in moa.clusterers
-
- AbstractClusterer() - Constructor for class moa.clusterers.AbstractClusterer
-
- AbstractConceptDriftGenerator - Class in moa.streams.generators.cd
-
- AbstractConceptDriftGenerator() - Constructor for class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- AbstractErrorWeightedVote - Class in moa.classifiers.rules.core.voting
-
AbstractErrorWeightedVote class for weighted votes based on estimates of errors.
- AbstractErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
-
- AbstractMacroClusterer - Class in moa.clusterers.macro
-
- AbstractMacroClusterer() - Constructor for class moa.clusterers.macro.AbstractMacroClusterer
-
- AbstractMOAObject - Class in moa
-
Abstract MOA Object.
- AbstractMOAObject() - Constructor for class moa.AbstractMOAObject
-
- AbstractOption - Class in moa.options
-
Abstract option.
- AbstractOption(String, char, String) - Constructor for class moa.options.AbstractOption
-
Creates a new instance of an abstract option given its class name,
command line interface text and its purpose.
- AbstractOptionHandler - Class in moa.options
-
Abstract Option Handler.
- AbstractOptionHandler() - Constructor for class moa.options.AbstractOptionHandler
-
- AbstractRecommenderData - Class in moa.recommender.rc.data
-
- AbstractRecommenderData() - Constructor for class moa.recommender.rc.data.AbstractRecommenderData
-
- AbstractStreamFilter - Class in moa.streams.filters
-
Abstract Stream Filter.
- AbstractStreamFilter() - Constructor for class moa.streams.filters.AbstractStreamFilter
-
- AbstractTabPanel - Class in moa.gui
-
Abstract Tab Panel.
- AbstractTabPanel() - Constructor for class moa.gui.AbstractTabPanel
-
- AbstractTask - Class in moa.tasks
-
Abstract Task.
- AbstractTask() - Constructor for class moa.tasks.AbstractTask
-
- acc1 - Variable in class moa.gui.TaskTextViewerPanel
-
- acc2 - Variable in class moa.gui.TaskTextViewerPanel
-
- accept(File) - Method in class moa.gui.FileExtensionFilter
-
- accumulatedError - Variable in class moa.classifiers.rules.functions.Perceptron
-
- Accuracy - Class in moa.evaluation
-
- Accuracy() - Constructor for class moa.evaluation.Accuracy
-
- accuracyBaseLearner - Variable in class moa.classifiers.active.ActiveClassifier
-
- AccuracyUpdatedEnsemble - Class in moa.classifiers.meta
-
The revised version of the Accuracy Updated Ensemble as proposed by
Brzezinski and Stefanowski in "Reacting to Different Types of Concept Drift:
The Accuracy Updated Ensemble Algorithm", IEEE Trans.
- AccuracyUpdatedEnsemble() - Constructor for class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
- AccuracyWeightedEnsemble - Class in moa.classifiers.meta
-
The Accuracy Weighted Ensemble classifier as proposed by Wang et al.
- AccuracyWeightedEnsemble() - Constructor for class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- actionPerformed(ActionEvent) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- actionPerformed(ActionEvent) - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- actionPerformed(ActionEvent) - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- actionPerformed(ActionEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- actionPerformed(ActionEvent) - Method in class moa.gui.TaskTextViewerPanel
-
- actionPerformed(ActionEvent) - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- actionPerformed(ActionEvent) - Method in class moa.gui.visualization.RunVisualizer
-
- activateLearningNode(HoeffdingOptionTree.InactiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- activateLearningNode(HoeffdingTree.InactiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
-
- ActiveClassifier - Class in moa.classifiers.active
-
Active learning setting for evolving data streams.
- ActiveClassifier() - Constructor for class moa.classifiers.active.ActiveClassifier
-
- activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingTree
-
- activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.ORTO
-
- activeLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- activeLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
-
- activeLearningStrategyOption - Variable in class moa.classifiers.active.ActiveClassifier
-
- actualClassStatistics - Variable in class moa.classifiers.rules.RuleClassification
-
- acuityOption - Variable in class moa.clusterers.CobWeb
-
- ADACC - Class in moa.classifiers.meta
-
Anticipative and Dynamic Adaptation to Concept Changes.
- ADACC() - Constructor for class moa.classifiers.meta.ADACC
-
- AdaHoeffdingOptionTree - Class in moa.classifiers.trees
-
Adaptive decision option tree for streaming data with adaptive Naive
Bayes classification at leaves.
- AdaHoeffdingOptionTree() - Constructor for class moa.classifiers.trees.AdaHoeffdingOptionTree
-
- AdaHoeffdingOptionTree.AdaLearningNode - Class in moa.classifiers.trees
-
- AdaHoeffdingOptionTree.AdaLearningNode(double[]) - Constructor for class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
-
- Adaptable - Variable in class moa.classifiers.trees.ORTO
-
- Adaptable - Variable in class moa.classifiers.trees.ORTO.Node
-
- add(CFCluster) - Method in class moa.cluster.CFCluster
-
- add(Cluster) - Method in class moa.cluster.Clustering
-
add a cluster to the clustering
- add(CFCluster) - Method in class moa.clusterers.clustream.ClustreamKernel
-
- add(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
-
Adds the given cluster to this cluster, without making this cluster
older.
- add(Entry) - Method in class moa.clusterers.clustree.Entry
-
Add the data cluster of another entry to the data cluster of this entry.
- add(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
-
Adds and indexes a data object.
- add(int, T) - Method in class moa.core.AutoExpandVector
-
- add(T) - Method in class moa.core.AutoExpandVector
-
- add(Instance) - Method in class moa.core.InstancesHeader
-
- add(double) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator.Estimator
-
- add(double) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
-
- add(double) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
-
- add(double) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
-
- addAll(Collection<? extends T>) - Method in class moa.core.AutoExpandVector
-
- addAll(int, Collection<? extends T>) - Method in class moa.core.AutoExpandVector
-
- addButtonActionListener(ActionListener) - Method in class moa.gui.clustertab.ClusteringSetupTab
-
- addButtonActionListener(ActionListener) - Method in class moa.gui.outliertab.OutlierSetupTab
-
- addChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionEditComponent
-
Adds the listener to the internal set of listeners.
- addChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionWithNamesEditComponent
-
Adds the listener to the internal set of listeners.
- addClusterChangeListener(ClusterEventListener) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
Add a listener
- addedPermanent - Variable in class moa.classifiers.meta.ADACC
-
Number of added snapshots
- addEmptyValue(int) - Method in class moa.evaluation.MeasureCollection
-
- addEntry(Entry, long) - Method in class moa.clusterers.clustree.Node
-
Add a new Entry
to this node.
- addEventType(String) - Method in class moa.evaluation.MeasureCollection
-
- addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Adds one instance to KDTree loosly.
- addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Adds the given instance info.
- addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Adds information from the given instance without modifying the
datastructure a lot.
- addInstanceToTree(Instance, KDTreeNode) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Recursively adds an instance to the tree starting from
the supplied KDTreeNode.
- addItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- addItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- addItem(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.data.RecommenderData
-
- additionalPlotOption - Variable in class moa.tasks.Plot
-
Additional plot options.
- additionalSetOption - Variable in class moa.tasks.Plot
-
Addition pre-plot gunplot commands.
- addLearningAttempt(int, double[], double) - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
-
- addLearningAttempt(int, double[], double) - Method in interface moa.evaluation.LearningPerformanceEvaluator
-
- addMeasurementName(String) - Method in class moa.evaluation.LearningCurve
-
- AddNode(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
-
- AddNoiseFilter - Class in moa.streams.filters
-
Filter for adding random noise to examples in a stream.
- AddNoiseFilter() - Constructor for class moa.streams.filters.AddNoiseFilter
-
- addNoiseOption - Variable in class moa.streams.generators.WaveformGenerator
-
- addObject(DataObject) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Adds a DataObject
to the set.
- addObject(DataSet) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Adds all objects in the given data set
- addObservation(double, double) - Method in class moa.core.GaussianEstimator
-
- addObservations(GaussianEstimator) - Method in class moa.core.GaussianEstimator
-
- addOldLabel(double) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- addOption(Option) - Method in class moa.options.Options
-
- AddOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- AddPrecNeigh(Long) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
-
- AddPrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- AddPrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- addResult(Instance, double[]) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- addResult(Instance, double[]) - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- addResult(Instance, double[]) - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- addResult(Instance, double[]) - Method in interface moa.evaluation.ClassificationPerformanceEvaluator
-
Adds a learning result to this evaluator.
- addResult(Instance, double[]) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- addResult(Instance, double[]) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- addResult(Instance, double[]) - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
-
Add a Result.
- addResult(Instance, double[]) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- addResult(Instance, double[]) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- addTaskCompletionListener(TaskCompletionListener) - Method in class moa.tasks.TaskThread
-
- addText(String) - Method in class moa.gui.TextViewerPanel
-
- addTimePerObject(double) - Method in class moa.evaluation.OutlierPerformance
-
- addToStored(Classifier, double) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Adds a classifier to the storage.
- addToStored(Classifier, double) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Adds a classifier to the storage.
- addToStored(OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory, double) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Adds a classifier to the storage.
- addToValue(int, double) - Method in class moa.core.DoubleVector
-
- addToValues(double) - Method in class moa.core.DoubleVector
-
- addUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- addUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- addUser(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.data.RecommenderData
-
- addValue(int, double) - Method in class moa.evaluation.MeasureCollection
-
- addValue(String, double) - Method in class moa.evaluation.MeasureCollection
-
- addValues(DoubleVector) - Method in class moa.core.DoubleVector
-
- addValues(double[]) - Method in class moa.core.DoubleVector
-
- addVectors(double[], double[]) - Static method in class moa.cluster.CFCluster
-
Adds the second array to the first array element by element.
- addVote(double[], double) - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
-
- addVote(double[], double) - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
-
Adds a vote and the corresponding error for the computation of the weighted vote and respective weighted error.
- ADError - Variable in class moa.classifiers.meta.LeveragingBag
-
- ADError - Variable in class moa.classifiers.meta.LimAttClassifier
-
- ADError - Variable in class moa.classifiers.meta.OzaBagAdwin
-
- ADError - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- ADWIN - Class in moa.classifiers.core.driftdetection
-
ADaptive sliding WINdow method.
- ADWIN() - Constructor for class moa.classifiers.core.driftdetection.ADWIN
-
- ADWIN(double) - Constructor for class moa.classifiers.core.driftdetection.ADWIN
-
- ADWIN(int) - Constructor for class moa.classifiers.core.driftdetection.ADWIN
-
- adwin - Variable in class moa.classifiers.core.driftdetection.ADWINChangeDetector
-
- ADWINChangeDetector - Class in moa.classifiers.core.driftdetection
-
Drift detection method based in ADWIN.
- ADWINChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.ADWINChangeDetector
-
- adwinReplaceWorstClassifierOption - Variable in class moa.classifiers.meta.LimAttClassifier
-
- afterAddInstance(KDTreeNode) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Corrects the start and end indices of a
KDTreeNode after an instance is added to
the tree.
- aggregate(ClusKernel, long, double) - Method in class moa.clusterers.clustree.ClusKernel
-
Make this cluster older bei weighting it and add to this cluster the
given cluster.
- aggregateCluster(ClusKernel, long, double) - Method in class moa.clusterers.clustree.Entry
-
Aggregate the given Kernel
to the data
cluster
of this entry.
- aggregateEntry(Entry, long, double) - Method in class moa.clusterers.clustree.Entry
-
Aggregate the data
in the Kernel
of the other
Entry
.
- aggregateToBuffer(ClusKernel, long, double) - Method in class moa.clusterers.clustree.Entry
-
Aggregate the given Kernel
to the buffer
cluster of this entry.
- AgrawalGenerator - Class in moa.streams.generators
-
Stream generator for Agrawal dataset.
- AgrawalGenerator() - Constructor for class moa.streams.generators.AgrawalGenerator
-
- AgrawalGenerator.ClassFunction - Interface in moa.streams.generators
-
- alpha - Variable in class moa.classifiers.meta.OCBoost
-
- alpha - Variable in class moa.classifiers.meta.OnlineSmoothBoost
-
- alpha - Variable in class moa.classifiers.meta.OzaBagASHT
-
- alpha - Variable in class moa.classifiers.rules.core.Rule.Builder
-
- alpha(double) - Method in class moa.classifiers.rules.core.Rule.Builder
-
- alpha - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- alpha - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
-
- alpha - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator.Estimator
-
- alpha - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
-
- alphainc - Variable in class moa.classifiers.meta.OCBoost
-
- alphaOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
-
- alphaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- alphaOption - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- alphaOption - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- alphaOption - Variable in class moa.streams.ConceptDriftRealStream
-
- alphaOption - Variable in class moa.streams.ConceptDriftStream
-
- alphaOption - Variable in class moa.tasks.EvaluatePrequential
-
- alphaOption - Variable in class moa.tasks.EvaluatePrequentialRegression
-
- Alternate - Variable in class moa.classifiers.trees.ORTO.Node
-
- alternateTree - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- alternateTree - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- alternateTree - Variable in class moa.classifiers.trees.ORTO.Node
-
- alternateTreeFadingFactorOption - Variable in class moa.classifiers.trees.FIMTDD
-
- AlternateTreeFadingFactorOption - Variable in class moa.classifiers.trees.ORTO
-
- alternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- alternateTreeTimeOption - Variable in class moa.classifiers.trees.FIMTDD
-
- AlternateTreeTimeOption - Variable in class moa.classifiers.trees.ORTO
-
- alternateTreeTMinOption - Variable in class moa.classifiers.trees.FIMTDD
-
- AlternateTreeTMinOption - Variable in class moa.classifiers.trees.ORTO
-
- amRules - Variable in class moa.classifiers.rules.core.Rule
-
- amRules - Variable in class moa.classifiers.rules.core.Rule.Builder
-
- amRules(AbstractAMRules) - Method in class moa.classifiers.rules.core.Rule.Builder
-
- amRules - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- AMRulesRegressor - Class in moa.classifiers.rules
-
- AMRulesRegressor() - Constructor for class moa.classifiers.rules.AMRulesRegressor
-
- anomalyDetectionOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- anomalyNumInstThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- anomalyNumInstThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- anomalyProbabilityThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- AnyOut - Class in moa.clusterers.outliers.AnyOut
-
- AnyOut() - Constructor for class moa.clusterers.outliers.AnyOut.AnyOut
-
- AnyOutCore - Class in moa.clusterers.outliers.AnyOut
-
- AnyOutCore() - Constructor for class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- appendIndent(StringBuilder, int) - Static method in class moa.core.StringUtils
-
- appendIndented(StringBuilder, int, String) - Static method in class moa.core.StringUtils
-
- appendNewline(StringBuilder) - Static method in class moa.core.StringUtils
-
- appendNewlineIndented(StringBuilder, int, String) - Static method in class moa.core.StringUtils
-
- applyChanges() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- applyChanges() - Method in class moa.gui.OptionsConfigurationPanel
-
- applyChanges() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- applyDrawDecay(float, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- applyDrawDecay(float) - Method in class moa.gui.visualization.StreamPanel
-
- applyState() - Method in class moa.gui.ClassOptionEditComponent
-
- applyState() - Method in class moa.gui.ClassOptionWithNamesEditComponent
-
- applyState() - Method in class moa.gui.FileOptionEditComponent
-
- applyState() - Method in class moa.gui.FlagOptionEditComponent
-
- applyState() - Method in class moa.gui.FloatOptionEditComponent
-
- applyState() - Method in class moa.gui.IntOptionEditComponent
-
- applyState() - Method in class moa.gui.MultiChoiceOptionEditComponent
-
- applyState() - Method in interface moa.gui.OptionEditComponent
-
This method applies the state
- applyState() - Method in class moa.gui.StringOptionEditComponent
-
- applyState() - Method in class moa.gui.WEKAClassOptionEditComponent
-
- ApplyToCanvas(BufferedImage) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- ApproxSTORM - Class in moa.clusterers.outliers.Angiulli
-
- ApproxSTORM() - Constructor for class moa.clusterers.outliers.Angiulli.ApproxSTORM
-
- ApproxSTORM.ISBNodeAppr - Class in moa.clusterers.outliers.Angiulli
-
- ApproxSTORM.ISBNodeAppr(Instance, StreamObj, Long, int) - Constructor for class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
-
- arffFileOption - Variable in class moa.streams.ArffFileStream
-
- arffFileOption - Variable in class moa.streams.clustering.FileStream
-
- arffFileOption - Variable in class moa.tasks.WriteStreamToARFFFile
-
- ArffFileStream - Class in moa.streams
-
Stream reader of ARFF files.
- ArffFileStream() - Constructor for class moa.streams.ArffFileStream
-
- ArffFileStream(String, int) - Constructor for class moa.streams.ArffFileStream
-
- array - Variable in class moa.core.DoubleVector
-
- ASHoeffdingTree - Class in moa.classifiers.trees
-
Adaptive Size Hoeffding Tree used in Bagging using trees of different size.
- ASHoeffdingTree() - Constructor for class moa.classifiers.trees.ASHoeffdingTree
-
- assignSubToCenters(KDTreeNode, Instances, int[], int[]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Assigns instances of this node to center.
- attachUpdatable(Updatable) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- attachUpdatable(Updatable) - Method in interface moa.recommender.rc.data.RecommenderData
-
- attemptToSplit(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
-
- attemptToSplit(FIMTDD.LeafNode, FIMTDD.SplitNode, int) - Method in class moa.classifiers.trees.FIMTDD
-
- attemptToSplit(HoeffdingOptionTree.ActiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- attemptToSplit(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
-
- attIndex - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
-
- attIndex - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
-
- attIndex - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
-
- attIndex - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- attNoiseFractionOption - Variable in class moa.streams.filters.AddNoiseFilter
-
- AttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
-
Interface for observing the class data distribution for an attribute.
- attributeIndicesTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Returns the tip text for this property.
- attributeMissingValues - Variable in class moa.classifiers.rules.RuleClassification
-
- attributeObservers - Variable in class moa.classifiers.bayes.NaiveBayes
-
- attributeObservers - Variable in class moa.classifiers.rules.RuleClassifier
-
- attributeObservers - Variable in class moa.classifiers.trees.DecisionStump
-
- attributeObservers - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- attributeObservers - Variable in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
-
- attributeObservers - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- attributeObservers - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- attributeObserversGauss - Variable in class moa.classifiers.rules.RuleClassifier
-
- AttributeSplitSuggestion - Class in moa.classifiers.core
-
Class for computing attribute split suggestions given a split test.
- AttributeSplitSuggestion(InstanceConditionalTest, double[][], double) - Constructor for class moa.classifiers.core.AttributeSplitSuggestion
-
- attributesProbability - Variable in class moa.classifiers.rules.RuleClassification
-
- attributeStatistics - Variable in class moa.classifiers.rules.RuleClassification
-
- attributeStatistics - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
- attributeStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassification
-
- attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- attValObservers - Variable in class moa.streams.filters.AddNoiseFilter
-
- attValue - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
-
- attValue - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
-
- attValue - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- AutoClassDiscovery - Class in moa.core
-
Class for discovering classes via reflection in the java class path.
- AutoClassDiscovery() - Constructor for class moa.core.AutoClassDiscovery
-
- AutoExpandVector<T> - Class in moa.core
-
Vector with the capability of automatic expansion.
- AutoExpandVector() - Constructor for class moa.core.AutoExpandVector
-
- AutoExpandVector(int) - Constructor for class moa.core.AutoExpandVector
-
- autoFreqStrings - Static variable in class moa.gui.PreviewPanel
-
- autoFreqTimeSecs - Static variable in class moa.gui.PreviewPanel
-
- autoRefreshComboBox - Variable in class moa.gui.PreviewPanel
-
- autoRefreshLabel - Variable in class moa.gui.PreviewPanel
-
- autoRefreshTimer - Variable in class moa.gui.PreviewPanel
-
- averageError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- averageError - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- averageMeasurements(Measurement[][]) - Static method in class moa.core.Measurement
-
- averageTargetError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- AWTInteractiveRenderer - Interface in moa.gui
-
- AWTRenderable - Interface in moa.gui
-
Interface representing a component that is renderable
- AWTRenderer - Interface in moa.gui
-
Interface representing a component to edit an option.
- c_max - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- c_min - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- cache - Variable in class moa.streams.filters.CacheFilter
-
- cached(DistanceFunction<Data>) - Static method in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
-
- cachedClassNames - Static variable in class moa.core.AutoClassDiscovery
-
- CachedInstancesStream - Class in moa.streams
-
Stream generator for representing a stream that is cached in memory.
- CachedInstancesStream(Instances) - Constructor for class moa.streams.CachedInstancesStream
-
- CacheFilter - Class in moa.streams.filters
-
Filter for representing a stream that is cached in memory.
- CacheFilter() - Constructor for class moa.streams.filters.CacheFilter
-
- CacheShuffledStream - Class in moa.tasks
-
Task for storing and shuffling examples in memory.
- CacheShuffledStream() - Constructor for class moa.tasks.CacheShuffledStream
-
- cacheTestOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
-
- calcByteSize() - Method in class moa.classifiers.trees.FIMTDD
-
- calcByteSize() - Method in class moa.classifiers.trees.FIMTDD.Node
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- calcByteSize() - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- calcByteSize() - Method in class moa.classifiers.trees.ORTO
-
- calcByteSize() - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- calcByteSize() - Method in class moa.classifiers.trees.ORTO.Node
-
- calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.FIMTDD.Node
-
- calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- calcDistance(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
-
Calculate the distance to this other cluster.
- calcDistance(ClusKernel) - Method in class moa.clusterers.clustree.Entry
-
Calculates the distance to the data in this entry.
- calcDistance(Entry) - Method in class moa.clusterers.clustree.Entry
-
Calculates the distance to the data in this entry of the data in the
given entry.
- calcLogLoss(double, double, double) - Static method in class moa.core.utils.EvalUtils
-
Calculate Log Loss.
- calculate(DATA, DATA) - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunction
-
- calculateDetph(ORTO) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- calculateDetph(ORTO) - Method in class moa.classifiers.trees.ORTO.Node
-
- calculatePromise() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- calculatePromise() - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- calibrateThreshold(ArrayList<double[]>, double) - Static method in class moa.core.utils.EvalUtils
-
Calibrate a threshold.
- calibrateThresholds(ArrayList<double[]>, double[]) - Static method in class moa.core.utils.EvalUtils
-
Calibrate thresholds.
- cancelFlag - Variable in class moa.tasks.StandardTaskMonitor
-
- cancelSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- cancelSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
-
- cancelSelectedTasks() - Method in class moa.gui.TaskManagerPanel
-
- cancelTask() - Method in class moa.tasks.TaskThread
-
- cancelTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- cancelTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
-
- cancelTaskButton - Variable in class moa.gui.TaskManagerPanel
-
- candidate - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Candidate classifier.
- candidate - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Candidate classifier.
- candidateClassifier - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- candidateIsFullOwner(KDTreeNode, Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns true if candidate is a full owner in respect to a competitor.
- caseAnomaly - Variable in class moa.classifiers.rules.RuleClassifier
-
- caseAnomalySupervised - Variable in class moa.classifiers.rules.RuleClassifier
-
- cds - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- CDTaskManagerPanel - Class in moa.gui.conceptdrift
-
This panel displays the running tasks.
- CDTaskManagerPanel() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel
-
- CDTaskManagerPanel.ProgressCellRenderer - Class in moa.gui.conceptdrift
-
- CDTaskManagerPanel.ProgressCellRenderer() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
-
- CDTaskManagerPanel.TaskTableModel - Class in moa.gui.conceptdrift
-
- CDTaskManagerPanel.TaskTableModel() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
-
- center() - Method in class moa.cluster.Miniball
-
Return the center of the Miniball
- centerInstances(Instances, int[], double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Assigns instances to centers using KDTree.
- centre - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
-
- centresStreamingCoreset - Variable in class moa.clusterers.streamkm.StreamKM
-
- centroids - Variable in class moa.streams.generators.RandomRBFGenerator
-
- centroidWeights - Variable in class moa.streams.generators.RandomRBFGenerator
-
- cEstimacion - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- CFCluster - Class in moa.cluster
-
- CFCluster(Instance, int) - Constructor for class moa.cluster.CFCluster
-
Instantiates an empty kernel with the given dimensionality.
- CFCluster(int) - Constructor for class moa.cluster.CFCluster
-
- CFCluster(double[], int) - Constructor for class moa.cluster.CFCluster
-
- CFCluster(CFCluster) - Constructor for class moa.cluster.CFCluster
-
- change - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- changeCluster(ClusterEvent) - Method in class moa.gui.BatchCmd
-
- changeCluster(ClusterEvent) - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- changeCluster(ClusterEvent) - Method in class moa.gui.visualization.RunVisualizer
-
- changeCluster(ClusterEvent) - Method in interface moa.streams.clustering.ClusterEventListener
-
- changeDetected - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- changeDetection - Variable in class moa.classifiers.rules.core.Rule.Builder
-
- changeDetection(boolean) - Method in class moa.classifiers.rules.core.Rule.Builder
-
- changeDetection - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- changeDetection - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- ChangeDetectionMeasures - Class in moa.evaluation
-
- ChangeDetectionMeasures() - Constructor for class moa.evaluation.ChangeDetectionMeasures
-
- ChangeDetector - Interface in moa.classifiers.core.driftdetection
-
Change Detector interface to implement methods that detects change.
- ChangeDetectorLearner - Class in moa.learners
-
Class for detecting concept drift and to be used as a learner.
- ChangeDetectorLearner() - Constructor for class moa.learners.ChangeDetectorLearner
-
- changeDetectorsOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- changeDriftOption - Variable in class moa.streams.generators.cd.GradualChangeGenerator
-
- changeListeners - Variable in class moa.gui.ClassOptionEditComponent
-
listeners that listen to changes to the chosen option.
- changeListeners - Variable in class moa.gui.ClassOptionWithNamesEditComponent
-
listeners that listen to changes to the chosen option.
- check_in(double[]) - Method in class moa.cluster.Miniball
-
Adds a point to the list.
Skip action on null parameter.
- checkBestAttrib(double, AutoExpandVector<AttributeClassObserver>, DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
-
- checkForSplit(FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
- checkMissing(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Checks if there is any instance with missing values.
- checkMissing(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Checks if there is any missing value in the given
instance.
- checkRoot() - Method in class moa.classifiers.trees.FIMTDD
-
- checkRoot() - Method in class moa.classifiers.trees.ORTO
-
- children - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
-
- children - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- children - Variable in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- children - Variable in class moa.classifiers.trees.ORTO.InnerNode
-
- children - Variable in class moa.streams.generators.RandomTreeGenerator.Node
-
- chooseRandomIndexBasedOnWeights(double[], Random) - Static method in class moa.core.MiscUtils
-
- chosenObject - Variable in class moa.gui.ClassOptionSelectionPanel
-
- chosenObject - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
-
- chosenObjectEditor - Variable in class moa.gui.ClassOptionSelectionPanel
-
- chosenObjectEditor - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
-
- chosenOptionIndex - Variable in class moa.options.MultiChoiceOption
-
- chunkSize - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- chunkSizeOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Chunk size.
- chunkSizeOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Chunk size.
- chunkSizeOption - Variable in class moa.tasks.EvaluateInterleavedChunks
-
Allow to define the training/testing chunk size.
- cindex(Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.StatisticalCollection
-
- classAccuracy - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- classChoiceBox - Variable in class moa.gui.ClassOptionSelectionPanel
-
- classChoiceBox - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
-
- classChoiceChanged(Object) - Method in class moa.gui.ClassOptionSelectionPanel
-
- classChoiceChanged(Object) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
-
- classCountsLeft - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
-
- classCountsRight - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
-
- classDistributions - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Class distributions.
- classDistributions - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- classDistributions - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Class distributions.
- classificationFunctions - Static variable in class moa.streams.generators.AgrawalGenerator
-
- classificationFunctions - Static variable in class moa.streams.generators.SEAGenerator
-
- classificationFunctions - Static variable in class moa.streams.generators.STAGGERGenerator
-
- ClassificationMeasureCollection - Interface in moa.evaluation
-
Classification Measure Collection interface that it is used to not appear in clustering
- ClassificationPerformanceEvaluator - Interface in moa.evaluation
-
Interface implemented by learner evaluators to monitor
the results of the learning process.
- ClassificationTabPanel - Class in moa.gui
-
This panel allows the user to select and configure a task, and run it.
- ClassificationTabPanel() - Constructor for class moa.gui.ClassificationTabPanel
-
- classifier - Variable in class moa.classifiers.active.ActiveClassifier
-
- Classifier - Interface in moa.classifiers
-
Classifier interface for incremental classification models.
- classifier - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- classifier - Variable in class moa.classifiers.meta.WEKAClassifier
-
- classifier - Variable in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
-
- classifierParameterOption - Variable in class moa.tasks.RunTasks
-
- classifierPurposeString - Static variable in class moa.clusterers.CobWeb
-
- classifierRandom - Variable in class moa.classifiers.AbstractClassifier
-
Random Generator used in randomizable learners
- classifierRandom - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- classifierRandom - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- classifierTipText() - Method in class weka.classifiers.meta.MOA
-
Returns the tooltip displayed in the GUI.
- classifyInstance(RandomTreeGenerator.Node, double[]) - Method in class moa.streams.generators.RandomTreeGenerator
-
- classIndexOption - Variable in class moa.streams.ArffFileStream
-
- classIndexOption - Variable in class moa.streams.clustering.FileStream
-
- classLabel - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
-
- classLabel - Variable in class moa.streams.generators.RandomTreeGenerator.Node
-
- classNoiseFractionOption - Variable in class moa.streams.filters.AddNoiseFilter
-
- ClassOption - Class in moa.options
-
Class option.
- ClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.ClassOption
-
- ClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.ClassOption
-
- ClassOptionEditComponent - Class in moa.gui
-
An OptionEditComponent that lets the user edit a class option.
- ClassOptionEditComponent(ClassOption) - Constructor for class moa.gui.ClassOptionEditComponent
-
- classOptionNamesToPreparedObjects - Variable in class moa.options.AbstractOptionHandler
-
Dictionary with option texts and objects
- ClassOptionSelectionPanel - Class in moa.gui
-
Creates a panel that displays the classes available, letting the user select
a class.
- ClassOptionSelectionPanel(Class<?>, String, String) - Constructor for class moa.gui.ClassOptionSelectionPanel
-
- ClassOptionWithNames - Class in moa.options
-
- ClassOptionWithNames(String, char, String, Class<?>, String, String[]) - Constructor for class moa.options.ClassOptionWithNames
-
- ClassOptionWithNames(String, char, String, Class<?>, String, String, String[]) - Constructor for class moa.options.ClassOptionWithNames
-
- ClassOptionWithNamesEditComponent - Class in moa.gui
-
- ClassOptionWithNamesEditComponent(ClassOptionWithNames) - Constructor for class moa.gui.ClassOptionWithNamesEditComponent
-
- ClassOptionWithNamesSelectionPanel - Class in moa.gui
-
- ClassOptionWithNamesSelectionPanel(Class<?>, String, String, String[]) - Constructor for class moa.gui.ClassOptionWithNamesSelectionPanel
-
- classToCLIString(Class<?>, Class<?>) - Static method in class moa.options.AbstractClassOption
-
Gets the command line interface text of the class.
- classValues(List<? extends Instance>) - Static method in class moa.cluster.Clustering
-
- classWeights - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
-
- clean(int) - Method in class moa.evaluation.MeasureCollection
-
- cleanUpKMeans(Clustering, ArrayList<CFCluster>) - Static method in class moa.clusterers.clustream.WithKmeans
-
Rearrange the k-means result into a set of CFClusters, cleaning up the redundancies.
- clear() - Method in class moa.cluster.Miniball
-
Method clear: clears the ArrayList of the selection points.
Use it for starting a new selection list to calculate Bounding Sphere on
or to clear memory references to the list of objects.
Always use at the end of a Miniball use if you want to reuse later the Miniball object
- clear() - Method in class moa.clusterers.clustree.ClusKernel
-
Remove all points from this cluster.
- clear() - Method in class moa.clusterers.clustree.Entry
-
Clear the Entry.
- clear() - Method in class moa.clusterers.clustree.Node
-
Clear this Node, which means that the noiseBuffer is cleared, that
shallowClear
is called upon all the entries of the node,
that the split counter is set to zero and the node is set to not be a
fake root.
- clear() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
- clear() - Method in class moa.core.AutoExpandVector
-
- clear() - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- clear() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- clear() - Method in interface moa.recommender.rc.data.RecommenderData
-
- clearEvents() - Method in class moa.gui.visualization.StreamOutlierPanel
-
- clearPoints() - Method in class moa.gui.visualization.StreamOutlierPanel
-
- cliChar - Variable in class moa.options.AbstractOption
-
Command line interface text of this option.
- clipToInsideHrect(KDTreeNode, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Finds the closest point in the hyper rectangle to a given point.
- cliStringToDouble(String) - Static method in class moa.options.FloatOption
-
- cliStringToInt(String) - Static method in class moa.options.IntOption
-
- cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.ClassOption
-
- cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.ClassOptionWithNames
-
- cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.WEKAClassOption
-
- cliStringToOptionArray(String, char, Option) - Static method in class moa.options.ListOption
-
- clone() - Method in class moa.clusterers.streamkm.Point
-
- close() - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- close() - Method in interface moa.recommender.rc.data.RecommenderData
-
- closeDialog() - Method in class weka.gui.MOAClassOptionEditor
-
Closes the dialog.
- closestPoint(Instance, Instances, int[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
-
Returns the index of the closest point to the current instance.
- ClusKernel - Class in moa.clusterers.clustree
-
Representation of an Entry in the tree
- ClusKernel(double[], int) - Constructor for class moa.clusterers.clustree.ClusKernel
-
A constructor that makes a Kernel which just represents the given point.
- ClusKernel(int) - Constructor for class moa.clusterers.clustree.ClusKernel
-
Constructor of the Cluster.
- ClusKernel(ClusKernel) - Constructor for class moa.clusterers.clustree.ClusKernel
-
Instantiates a copy of the given cluster.
- Cluster - Class in moa.cluster
-
- Cluster() - Constructor for class moa.cluster.Cluster
-
- clusterAddOption - Variable in class moa.clusterers.ClusterGenerator
-
- Clusterer - Interface in moa.clusterers
-
- clustererRandom - Variable in class moa.clusterers.AbstractClusterer
-
- clustererRandom - Variable in class moa.clusterers.streamkm.BucketManager
-
- clustererRandom - Variable in class moa.clusterers.streamkm.StreamKM
-
- ClusterEvent - Class in moa.streams.clustering
-
- ClusterEvent(Object, long, String, String) - Constructor for class moa.streams.clustering.ClusterEvent
-
- ClusterEventListener - Interface in moa.streams.clustering
-
- clusterEvents - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- ClusterGenerator - Class in moa.clusterers
-
- ClusterGenerator() - Constructor for class moa.clusterers.ClusterGenerator
-
- Clustering - Class in moa.cluster
-
- Clustering() - Constructor for class moa.cluster.Clustering
-
- Clustering(Cluster[]) - Constructor for class moa.cluster.Clustering
-
- Clustering(List<? extends Instance>) - Constructor for class moa.cluster.Clustering
-
- Clustering(ArrayList<DataPoint>, double, int) - Constructor for class moa.cluster.Clustering
-
- Clustering(AutoExpandVector<Cluster>) - Constructor for class moa.cluster.Clustering
-
- clustering - Variable in class moa.clusterers.AbstractClusterer
-
- ClusteringAlgoPanel - Class in moa.gui.clustertab
-
- ClusteringAlgoPanel() - Constructor for class moa.gui.clustertab.ClusteringAlgoPanel
-
- ClusteringEvalPanel - Class in moa.gui.clustertab
-
- ClusteringEvalPanel() - Constructor for class moa.gui.clustertab.ClusteringEvalPanel
-
Creates new form ClusteringEvalPanel
- ClusteringSetupTab - Class in moa.gui.clustertab
-
- ClusteringSetupTab() - Constructor for class moa.gui.clustertab.ClusteringSetupTab
-
Creates new form ClusteringSetupTab
- ClusteringStream - Class in moa.streams.clustering
-
- ClusteringStream() - Constructor for class moa.streams.clustering.ClusteringStream
-
- ClusteringTabPanel - Class in moa.gui.clustertab
-
- ClusteringTabPanel() - Constructor for class moa.gui.clustertab.ClusteringTabPanel
-
Creates new form ClusterTab
- ClusteringVisualEvalPanel - Class in moa.gui.clustertab
-
- ClusteringVisualEvalPanel() - Constructor for class moa.gui.clustertab.ClusteringVisualEvalPanel
-
Creates new form ClusteringEvalPanel
- ClusteringVisualTab - Class in moa.gui.clustertab
-
- ClusteringVisualTab() - Constructor for class moa.gui.clustertab.ClusteringVisualTab
-
Creates new form ClusteringVisualTab
- ClusterPanel - Class in moa.gui.visualization
-
- ClusterPanel(SphereCluster, Color, StreamPanel) - Constructor for class moa.gui.visualization.ClusterPanel
-
Creates new form ObjectPanel
- clusterRemoveOption - Variable in class moa.clusterers.ClusterGenerator
-
- Clustream - Class in moa.clusterers.clustream
-
Citation: CluStream: Charu C.
- Clustream() - Constructor for class moa.clusterers.clustream.Clustream
-
- ClustreamKernel - Class in moa.clusterers.clustream
-
- ClustreamKernel(Instance, int, long, double, int) - Constructor for class moa.clusterers.clustream.ClustreamKernel
-
- ClustreamKernel(ClustreamKernel, double, int) - Constructor for class moa.clusterers.clustream.ClustreamKernel
-
- ClusTree - Class in moa.clusterers.clustree
-
Citation: ClusTree: Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl:
The ClusTree: indexing micro-clusters for anytime stream mining.
- ClusTree() - Constructor for class moa.clusterers.clustree.ClusTree
-
- CMM - Class in moa.evaluation
-
- CMM() - Constructor for class moa.evaluation.CMM
-
- CMM_GTAnalysis - Class in moa.evaluation
-
- CMM_GTAnalysis(Clustering, ArrayList<DataPoint>, boolean) - Constructor for class moa.evaluation.CMM_GTAnalysis
-
- CMM_GTAnalysis.CMMPoint - Class in moa.evaluation
-
Wrapper class for data points to store CMM relevant attributes
- CMM_GTAnalysis.CMMPoint(DataPoint, int) - Constructor for class moa.evaluation.CMM_GTAnalysis.CMMPoint
-
- CMM_GTAnalysis.GTCluster - Class in moa.evaluation
-
Main class to model the new clusters that will be the output of the cluster analysis
- CobWeb - Class in moa.clusterers
-
Class implementing the Cobweb and Classit clustering algorithms.
- CobWeb() - Constructor for class moa.clusterers.CobWeb
-
- col - Variable in class moa.gui.visualization.ClusterPanel
-
- col - Variable in class moa.gui.visualization.OutlierPanel
-
- col - Variable in class moa.gui.visualization.PointPanel
-
- ColorArray - Class in moa.clusterers.macro
-
- ColorArray() - Constructor for class moa.clusterers.macro.ColorArray
-
- ColorObject - Class in moa.clusterers.macro
-
- ColorObject(String, Color) - Constructor for class moa.clusterers.macro.ColorObject
-
- colour - Variable in class moa.gui.LineGraphViewPanel.PlotLine
-
- columnKappa - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- columnKappa - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- columnsStatistics - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- combinationOption - Variable in class moa.classifiers.meta.DACC
-
Combination functions: MAX and WVD (MAX leads to a faster reactivity to the change, WVD is more robust to noise)
- combine(SphereCluster) - Method in class moa.cluster.SphereCluster
-
- combSort11(double[], int[]) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
sorts the two given arrays.
- compareTo(AttributeSplitSuggestion) - Method in class moa.classifiers.core.AttributeSplitSuggestion
-
- compareTo(DACC.Pair) - Method in class moa.classifiers.meta.DACC.Pair
-
- compareTo(StreamObj) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
-
- compareTo(StreamObj) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
-
- compareTo(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- compareTo(MCODBase.EventItem) - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
-
- compareTo(MicroCluster) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
-
- compareTo(StreamObj) - Method in class moa.clusterers.outliers.MCOD.StreamObj
-
- compareTo(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
-
- compareTo(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- compareTo(SimpleCODBase.EventItem) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
-
- compareTo(StreamObj) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
-
- compareTo(Pair<T, U>) - Method in class moa.recommender.rc.utils.Pair
-
- componentHidden(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- componentHidden(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- componentHidden(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
-
- componentMoved(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- componentMoved(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- componentMoved(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
-
- componentResized(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- componentResized(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- componentResized(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
-
- componentShown(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- componentShown(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- componentShown(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
-
- ComposedSplitFunction<DATA> - Class in moa.clusterers.outliers.utils.mtree
-
- ComposedSplitFunction(PromotionFunction<DATA>, PartitionFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.ComposedSplitFunction
-
- compress(long) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- compressBuckets() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- computeAnomalySupervised(RuleClassification, int, Instance) - Method in class moa.classifiers.rules.RuleClassifier
-
- computeAnomalyUnsupervised(RuleClassification, int, Instance) - Method in class moa.classifiers.rules.RuleClassifier
-
- computeBandBoundaries(long) - Static method in class moa.core.GreenwaldKhannaQuantileSummary
-
- computeBranchSplitMerits(double[][]) - Static method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
-
- computeCandidateWeight(Classifier, Instances, int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Computes the weight of a candidate classifier.
- computeEntropy(double[]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- computeEntropy(double[][]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- computeEntropy(double[]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterionMultilabel
-
- computeError(Instance) - Method in class moa.classifiers.rules.core.Rule
-
- computeError(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- computeError(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- computeGini(double[], double) - Static method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
-
- computeGini(double[]) - Static method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
-
- computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- ComputeHoeffdingBound(double, double, double) - Method in class moa.classifiers.rules.RuleClassifier
-
- computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.FIMTDD
-
- computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.HoeffdingOptionTree
-
- computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.HoeffdingTree
-
- computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.ORTO
-
- computeMean(double, int) - Method in class moa.classifiers.rules.RuleClassifier
-
- computeMeritOfExistingSplit(SplitCriterion, double[]) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- computeMse(Classifier, Instances) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Computes the MSE of a learner for a given chunk of examples.
- computeMseR() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Computes the MSEr threshold.
- computeMseR() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Computes the MSEr threshold.
- computeMseR() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Computes the MSEr threshold.
- computeProbability(double, double, double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- computeProbability(double, double, double) - Method in class moa.classifiers.rules.RuleClassifier
-
- computeSD(double[]) - Static method in class moa.classifiers.core.splitcriteria.SDRSplitCriterion
-
- computeSD(double[]) - Static method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
-
- computeSD(double, double, long) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- computeSD(double, double, int) - Method in class moa.classifiers.rules.functions.Perceptron
-
- computeSD(double, double, int) - Method in class moa.classifiers.rules.RuleClassifier
-
- computeSD(double, double, double) - Method in class moa.classifiers.trees.FIMTDD
-
- computeWeight(Classifier, Instances) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Computes the weight of a given classifie.
- computeWeight(int, Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Computes the weight of a learner before training a given example.
- computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
-
- computeWeightedVote() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
-
Computes the weighted vote.
- computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
-
- computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.UniformWeightedVote
-
- ConceptDriftGenerator - Interface in moa.streams.generators.cd
-
- ConceptDriftMainTask - Class in moa.tasks
-
- ConceptDriftMainTask() - Constructor for class moa.tasks.ConceptDriftMainTask
-
- ConceptDriftRealStream - Class in moa.streams
-
Stream generator that adds concept drift to examples in a stream with
different classes and attributes.
- ConceptDriftRealStream() - Constructor for class moa.streams.ConceptDriftRealStream
-
- ConceptDriftStream - Class in moa.streams
-
Stream generator that adds concept drift to examples in a stream.
- ConceptDriftStream() - Constructor for class moa.streams.ConceptDriftStream
-
- ConceptDriftTabPanel - Class in moa.gui
-
This panel allows the user to select and configure a task, and run it.
- ConceptDriftTabPanel() - Constructor for class moa.gui.ConceptDriftTabPanel
-
- Conditional - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- confidenceChoiceOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- configureTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- configureTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
-
- configureTaskButton - Variable in class moa.gui.TaskManagerPanel
-
- confKOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- connectivity - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
-
the connectivity of the point to its cluster
- constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.AMRulesRegressor
-
- constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.core.Rule.Builder
-
- constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.functions.Perceptron
-
- contains(int, int) - Method in class moa.gui.visualization.ClusterPanel
-
- contains(int, int) - Method in class moa.gui.visualization.OutlierPanel
-
- contextIsCompatible(InstancesHeader, InstancesHeader) - Static method in class moa.classifiers.AbstractClassifier
-
Returns if two contexts or headers of instances are compatible.
Two contexts are compatible if they follow the following rules:
Rule 1: num classes can increase but never decrease
Rule 2: num attributes can increase but never decrease
Rule 3: num nominal attribute values can increase but never decrease
Rule 4: attribute types must stay in the same order (although class
can move; is always skipped over)
Attribute names are free to change, but should always still represent
the original attributes.
- contextIsCompatible(InstancesHeader, InstancesHeader) - Static method in class moa.clusterers.AbstractClusterer
-
- converter - Variable in class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- Converter - Class in moa.core.utils
-
Converter.
- Converter() - Constructor for class moa.core.utils.Converter
-
- Converter(int) - Constructor for class moa.core.utils.Converter
-
- convertX(double) - Method in class moa.gui.LineGraphViewPanel.PlotLine
-
- convertY(double) - Method in class moa.gui.LineGraphViewPanel.PlotLine
-
- copy() - Method in class moa.AbstractMOAObject
-
- copy(MOAObject) - Static method in class moa.AbstractMOAObject
-
This method produces a copy of an object.
- copy() - Method in class moa.classifiers.AbstractClassifier
-
- copy() - Method in interface moa.classifiers.Classifier
-
Produces a copy of this classifier.
- copy() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Produces a copy of this change detector method
- copy() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Produces a copy of this drift detection method
- copy() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
-
Creates a copy of the object
- copy() - Method in class moa.clusterers.AbstractClusterer
-
- copy() - Method in interface moa.clusterers.Clusterer
-
- copy() - Method in class moa.clusterers.denstream.MicroCluster
-
- copy() - Method in class moa.core.AutoExpandVector
-
- copy() - Method in interface moa.MOAObject
-
This method produces a copy of this object.
- copy() - Method in class moa.options.AbstractOption
-
- copy() - Method in class moa.options.AbstractOptionHandler
-
- copy() - Method in interface moa.options.Option
-
Gets a copy of this option
- copy() - Method in interface moa.options.OptionHandler
-
This method produces a copy of this object.
- copy() - Method in class moa.recommender.rc.utils.DenseVector
-
- copy() - Method in class moa.recommender.rc.utils.SparseVector
-
- copy() - Method in class moa.recommender.rc.utils.Vector
-
- copyClipBoardConfiguration() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- copyClipBoardConfiguration() - Method in class moa.gui.RegressionTaskManagerPanel
-
- copyClipBoardConfiguration() - Method in class moa.gui.TaskManagerPanel
-
- copyObject(Serializable) - Static method in class moa.core.SerializeUtils
-
- copyrightNotice - Static variable in class moa.core.Globals
-
- copyStatistics(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.Node
-
- coresetsize - Variable in class moa.clusterers.streamkm.StreamKM
-
- correctlyClassifies(Instance) - Method in class moa.classifiers.AbstractClassifier
-
- correctlyClassifies(Instance) - Method in interface moa.classifiers.Classifier
-
Gets whether this classifier correctly classifies an instance.
- correctlyInitialized() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Checks whether an object of this class has been correctly
initialized.
- CorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
-
- costLabeling - Variable in class moa.classifiers.active.ActiveClassifier
-
- costLabelingRandom - Variable in class moa.classifiers.active.ActiveClassifier
-
- costOfPoint(int, Point[]) - Method in class moa.clusterers.streamkm.Point
-
Computes the cost of this point with the given array of centres centres[] (of size k)
- costOfPointToCenter(Point) - Method in class moa.clusterers.streamkm.Point
-
Computes the cost of this point with centre centre
- count_after - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
-
- count_after - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
-
- count_after - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- count_after - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- count_before - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
-
- countLeaves() - Method in class moa.classifiers.trees.FIMTDD.Node
-
- countLeaves() - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
-
- CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- countRatingsItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- countRatingsItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- countRatingsUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- countRatingsUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- createCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
-
Creates the custom editor.
- createLabelledOptionComponentListPanel(Option[], List<OptionEditComponent>) - Static method in class moa.gui.OptionsConfigurationPanel
-
- createNewClassifier(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Processes a chunk.
- createRule(Instance) - Method in class moa.classifiers.rules.RuleClassifier
-
- createTemplate(Instances) - Method in class moa.core.utils.Converter
-
- createWekaClassifier(String[]) - Method in class moa.classifiers.meta.WEKAClassifier
-
- cumulativeSum - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- curItemID() - Method in interface moa.recommender.dataset.Dataset
-
- curItemID() - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- curItemID() - Method in class moa.recommender.dataset.impl.JesterDataset
-
- curItemID() - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- curRating() - Method in interface moa.recommender.dataset.Dataset
-
- curRating() - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- curRating() - Method in class moa.recommender.dataset.impl.JesterDataset
-
- curRating() - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- currentActivityDescription - Variable in class moa.tasks.StandardTaskMonitor
-
- currentActivityFractionComplete - Variable in class moa.tasks.StandardTaskMonitor
-
- currentChunk - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Current chunk of instances.
- currentChunk - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- currentLength() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
Gets the current length of the list.
- currentList - Variable in class moa.options.ListOption
-
- currentStatus - Variable in class moa.tasks.TaskThread
-
- currentTask - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- currentTask - Variable in class moa.gui.RegressionTaskManagerPanel
-
- currentTask - Variable in class moa.gui.TaskManagerPanel
-
- currentVal - Variable in class moa.options.FloatOption
-
- currentVal - Variable in class moa.options.IntOption
-
- currentVal - Variable in class moa.options.StringOption
-
- currentValue - Variable in class moa.options.AbstractClassOption
-
The current object
- currentWindow - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Current window of instance class values.
- curUserID() - Method in interface moa.recommender.dataset.Dataset
-
- curUserID() - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- curUserID() - Method in class moa.recommender.dataset.impl.JesterDataset
-
- curUserID() - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- curve - Variable in class moa.gui.LineGraphViewPanel.PlotLine
-
- CusumDM - Class in moa.classifiers.core.driftdetection
-
Drift detection method based in Cusum
- CusumDM() - Constructor for class moa.classifiers.core.driftdetection.CusumDM
-
- cut_point - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
-
- cut_point - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
-
- cut_point - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
-
- cutoffOption - Variable in class moa.clusterers.CobWeb
-
- DACC - Class in moa.classifiers.meta
-
Dynamic Adaptation to Concept Changes.
- DACC() - Constructor for class moa.classifiers.meta.DACC
-
- DACC.Pair - Class in moa.classifiers.meta
-
This helper class is used to sort an array of pairs of integers: val and index.
- DACC.Pair(double, int) - Constructor for class moa.classifiers.meta.DACC.Pair
-
- data - Variable in class moa.clusterers.clustree.Entry
-
The actual entry data.
- data - Variable in class moa.clusterers.outliers.utils.mtree.MTree.ResultItem
-
A nearest-neighbor.
- data - Variable in class moa.recommender.rc.predictor.impl.BaselinePredictor
-
- data - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- DataObject - Class in moa.clusterers.outliers.AnyOut.util
-
This object encapsulates a data point.
- DataObject(int, Instance) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataObject
-
Standard constructor for DataObject
.
- dataOption - Variable in class moa.recommender.predictor.BaselinePredictor
-
- dataOption - Variable in class moa.recommender.predictor.BRISMFPredictor
-
- DataPoint - Class in moa.gui.visualization
-
- DataPoint(Instance, Integer) - Constructor for class moa.gui.visualization.DataPoint
-
- dataset - Variable in class moa.classifiers.meta.RandomRules
-
- DataSet - Class in moa.clusterers.outliers.AnyOut.util
-
A set of DataObject
s.
- DataSet(int) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataSet
-
Creates an empty set.
- DataSet(DataObject) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataSet
-
Creates a Set with only the given object.
- Dataset - Interface in moa.recommender.dataset
-
- datasetOption - Variable in class moa.tasks.EvaluateOnlineRecommender
-
- DBScan - Class in moa.clusterers.macro.dbscan
-
- DBScan(Clustering, double, int) - Constructor for class moa.clusterers.macro.dbscan.DBScan
-
- DDM - Class in moa.classifiers.core.driftdetection
-
Drift detection method based in DDM method of Joao Gama SBIA 2004.
- DDM() - Constructor for class moa.classifiers.core.driftdetection.DDM
-
- DDM_INCONTROL_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- DDM_OUTCONTROL_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- DDM_WARNING_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- ddmLevel - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- deactivateAllLeaves() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- deactivateAllLeaves() - Method in class moa.classifiers.trees.HoeffdingTree
-
- deactivateLearningNode(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- deactivateLearningNode(HoeffdingOptionTree.ActiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- deactivateLearningNode(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
-
- debug(String, int) - Method in class moa.classifiers.rules.AbstractAMRules
-
Print to console
- debug(String, int) - Method in class moa.classifiers.rules.core.Rule
-
- debug(String, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- debug - Variable in class moa.evaluation.CMM
-
enable/disable debug mode
- debuganomaly(Instance, double, double, double) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- decay_rate - Variable in class moa.gui.visualization.ClusterPanel
-
- decay_rate - Variable in class moa.gui.visualization.OutlierPanel
-
- decayHorizonOption - Variable in class moa.streams.clustering.ClusteringStream
-
- decayRate - Variable in class moa.gui.visualization.PointPanel
-
- decayThreshold - Variable in class moa.gui.visualization.PointPanel
-
- decayThresholdOption - Variable in class moa.streams.clustering.ClusteringStream
-
- decisionNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- decisionNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
-
- DecisionStump - Class in moa.classifiers.trees
-
Decision trees of one level.
Parameters:
- DecisionStump() - Constructor for class moa.classifiers.trees.DecisionStump
-
- decrCutPoint - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- default_color - Variable in class moa.gui.visualization.ClusterPanel
-
- default_color - Variable in class moa.gui.visualization.OutlierPanel
-
- default_color - Variable in class moa.gui.visualization.PointPanel
-
- DEFAULT_MIN_NODE_CAPACITY - Static variable in class moa.clusterers.outliers.utils.mtree.MTree
-
The default minimum capacity of nodes in an M-Tree, when not specified in
the constructor call.
- defaultCLIString - Variable in class moa.options.AbstractClassOption
-
The default command line interface text.
- defaultFileExtension - Variable in class moa.options.FileOption
-
- defaultList - Variable in class moa.options.ListOption
-
- defaultOptionIndex - Variable in class moa.options.MultiChoiceOption
-
- defaultRule - Variable in class moa.classifiers.rules.AbstractAMRules
-
- defaultVal - Variable in class moa.options.FloatOption
-
- defaultVal - Variable in class moa.options.IntOption
-
- defaultVal - Variable in class moa.options.StringOption
-
- defineDataFormat() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Initializes the format for the dataset produced.
- delay - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Delay in detecting change
- delay - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- deleteElement() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- deleteMergeableTupleMostFull() - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- deleteNode(HoeffdingTree.Node, int) - Method in class moa.classifiers.trees.ASHoeffdingTree
-
- deleteScriptsOption - Variable in class moa.tasks.Plot
-
Determines whether to delete gnuplot scripts after plotting.
- deleteSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- deleteSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
-
- deleteSelectedTasks() - Method in class moa.gui.TaskManagerPanel
-
- deleteTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- deleteTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
-
- deleteTaskButton - Variable in class moa.gui.TaskManagerPanel
-
- deleteTuple(int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- deleteTupleMostFull() - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- DELTA - Static variable in class moa.classifiers.core.driftdetection.ADWIN
-
- delta - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
-
- deltaAdwinOption - Variable in class moa.classifiers.core.driftdetection.ADWINChangeDetector
-
- deltaAdwinOption - Variable in class moa.classifiers.meta.LeveragingBag
-
- deltaAdwinOption - Variable in class moa.classifiers.meta.LimAttClassifier
-
- deltaAdwinOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- deltaOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
-
- deltaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- deltaOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- deltaSeqDrift2Option - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
-
- deltaWarningOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- DenseMicroCluster - Class in moa.clusterers.macro.dbscan
-
- DenseMicroCluster(CFCluster) - Constructor for class moa.clusterers.macro.dbscan.DenseMicroCluster
-
- DenseVector - Class in moa.recommender.rc.utils
-
- DenseVector() - Constructor for class moa.recommender.rc.utils.DenseVector
-
- DenseVector(ArrayList<Double>) - Constructor for class moa.recommender.rc.utils.DenseVector
-
- DenseVector.DenseVectorIterator - Class in moa.recommender.rc.utils
-
- DenseVector.DenseVectorIterator() - Constructor for class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
-
- densityRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
-
Gets the text that describes the condition of a branch.
- describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
-
- describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
-
- describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
-
- describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- describeSubtree(FIMTDD, StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
- describeSubtree(FIMTDD, StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.Node
-
- describeSubtree(FIMTDD, StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- describeSubtree(HoeffdingOptionTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- describeSubtree(HoeffdingOptionTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- describeSubtree(HoeffdingTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- describeSubtree(HoeffdingTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- detectMeanIncrement(HDDM_W_Test.SampleInfo, HDDM_W_Test.SampleInfo, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- determineAssignments(KDTreeNode, Instances, int[], int[], double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Assigns instances to the current centers called candidates.
- determineClass(double, double, int, int, int, int, double, int, double) - Method in interface moa.streams.generators.AgrawalGenerator.ClassFunction
-
- determineClass(double, double, double) - Method in interface moa.streams.generators.SEAGenerator.ClassFunction
-
- determineClass(int, int, int) - Method in interface moa.streams.generators.STAGGERGenerator.ClassFunction
-
- determineClusterCentreKMeans(int, Point[]) - Method in class moa.clusterers.streamkm.Point
-
Computes the index of the centre nearest to this point with the given array of centres centres[] (of size k)
- determineNumberOfClusters() - Method in class moa.clusterers.CobWeb
-
determines the number of clusters if necessary
- difference(int, double, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Computes the difference between two given attribute
values.
- dimension() - Method in class moa.cluster.Clustering
-
- dimension - Variable in class moa.clusterers.streamkm.StreamKM
-
- dimensions() - Method in class moa.clusterers.outliers.AbstractC.StreamObj
-
- dimensions() - Method in class moa.clusterers.outliers.Angiulli.StreamObj
-
- dimensions() - Method in class moa.clusterers.outliers.MCOD.MicroCluster
-
- dimensions() - Method in class moa.clusterers.outliers.MCOD.StreamObj
-
- dimensions() - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
-
- dimensions() - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunctions.EuclideanCoordinate
-
The number of dimensions.
- direction - Variable in class moa.gui.visualization.ClusterPanel
-
- directionForBestTree() - Method in class moa.classifiers.trees.ORTO.OptionNode
-
- disableAttribute(int) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
-
- disableAttribute(int) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
-
- disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
-
- disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
-
- disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
-
- disableAttribute(int) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
-
- disableAttribute(int) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- disableAttribute(int) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
-
- disableChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.Node
-
- disableChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- disableRefresh() - Method in class moa.gui.PreviewPanel
-
- disableUpdates - Variable in class moa.recommender.rc.data.AbstractRecommenderData
-
- disableUpdates(boolean) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- disableUpdates(boolean) - Method in interface moa.recommender.rc.data.RecommenderData
-
- discardModel(int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Removes the classifier at a given index from the model, thus decreasing
the models size.
- discardModel(int) - Method in class moa.classifiers.meta.DACC
-
Resets a classifier in the ensemble
- discardModel(int) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- discoverOptionsViaReflection() - Method in class moa.options.AbstractOptionHandler
-
Gets the options of this class via reflection.
- DiscreteAttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
-
Interface for observing the class data distribution for a discrete (nominal) attribute.
- distance(Instance, Instance) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Calculates the distance between two instances.
- distance(Instance, Instance, double) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Calculates the distance between two instances.
- distance(Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
-
Calculates the distance between two instances.
- distance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
-
the distance of this element.
- distance(Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Calculates the distance between two instances.
- distance(Instance, Instance, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Calculates the distance between two instances.
- distance - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
-
- distance - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
-
- distance - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
-
- distance - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
-
- distance - Variable in class moa.clusterers.outliers.utils.mtree.MTree.ResultItem
-
The distance from the nearest-neighbor to the query data object
parameter.
- DistanceFunction - Interface in moa.classifiers.lazy.neighboursearch
-
Interface for any class that can compute and return distances between two
instances.
- DistanceFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
-
An object that can calculate the distance between two data objects.
- distanceFunction - Variable in class moa.clusterers.outliers.utils.mtree.MTree
-
- DistanceFunctions - Class in moa.clusterers.outliers.utils.mtree
-
- DistanceFunctions.EuclideanCoordinate - Interface in moa.clusterers.outliers.utils.mtree
-
An interface to represent coordinates in Euclidean spaces.
- distanceFunctionTipText() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Returns the tip text for this property.
- distanceToHrect(KDTreeNode, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the distance between a point and an hyperrectangle.
- distributionForInstance(Instance) - Method in class weka.classifiers.meta.MOA
-
Predicts the class memberships for a given instance.
- dloss(double) - Method in class moa.classifiers.functions.SGD
-
- dloss(double) - Method in class moa.classifiers.functions.SGDMultiClass
-
- dloss(double) - Method in class moa.classifiers.functions.SPegasos
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateClustering
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateConceptDrift
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateInterleavedChunks
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModel
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModelRegression
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateOnlineRecommender
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequential
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialRegression
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModel
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModelRegression
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MainTask
-
This method performs this task.
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MeasureStreamSpeed
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.Plot
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.RunStreamTasks
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.RunTasks
-
- doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.WriteStreamToARFFFile
-
- doNaiveBayesPrediction(Instance, DoubleVector, AutoExpandVector<AttributeClassObserver>) - Static method in class moa.classifiers.bayes.NaiveBayes
-
- doNaiveBayesPredictionLog(Instance, DoubleVector, AutoExpandVector<AttributeClassObserver>, AutoExpandVector<AttributeClassObserver>) - Static method in class moa.classifiers.bayes.NaiveBayes
-
- dontNormalizeTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Returns the tip text for this property.
- DoTask - Class in moa
-
Class for running a MOA task from the command line.
- DoTask() - Constructor for class moa.DoTask
-
- doTask() - Method in class moa.tasks.AbstractTask
-
- doTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
-
- doTask() - Method in interface moa.tasks.Task
-
This method performs this task,
when TaskMonitor and ObjectRepository are no needed.
- doTask(TaskMonitor, ObjectRepository) - Method in interface moa.tasks.Task
-
This method performs this task.
- doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
-
This method performs this task.
- doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.CacheShuffledStream
-
- doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MainTask
-
- dotProd(Instance, DoubleVector, int) - Static method in class moa.classifiers.functions.SGD
-
- dotProd(Instance, DoubleVector, int) - Static method in class moa.classifiers.functions.SGDMultiClass
-
- dotProd(Instance, double[], int) - Static method in class moa.classifiers.functions.SPegasos
-
- dotProduct(Vector) - Method in class moa.recommender.rc.utils.Vector
-
- DOUBLE_ADD - Static variable in class moa.clusterers.clustree.util.SimpleBudget
-
- DOUBLE_DIV - Static variable in class moa.clusterers.clustree.util.SimpleBudget
-
- DOUBLE_MULT - Static variable in class moa.clusterers.clustree.util.SimpleBudget
-
- doubleAddition() - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
class that a double addition has been
performed by the tree.
- doubleAddition(int) - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
that a certain number of double additions
have been performed.
- doubleAddition() - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- doubleAddition(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- doubleDivision() - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
class that a double division has
been performed by the tree.
- doubleDivision(int) - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
that a certain number of double divisions
have been performed.
- doubleDivision() - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- doubleDivision(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- doubleMultiplication() - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
class that a double multiplicaton has
been performed by the tree.
- doubleMultiplication(int) - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
that a certain number of double
multiplications have been performed.
- doubleMultiplication() - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- doubleMultiplication(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- doubleToCLIString(double) - Static method in class moa.options.FloatOption
-
- doubleToString(double, int) - Static method in class moa.core.StringUtils
-
- doubleToString(double, int, int) - Static method in class moa.core.StringUtils
-
- DoubleVector - Class in moa.core
-
Vector of double numbers with some utilities.
- DoubleVector() - Constructor for class moa.core.DoubleVector
-
- DoubleVector(double[]) - Constructor for class moa.core.DoubleVector
-
- DoubleVector(DoubleVector) - Constructor for class moa.core.DoubleVector
-
- downheap() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
performs downheap operation for the heap
to maintian its properties.
- drawClusterings(List<DataPoint>, List<DataPoint>) - Method in class moa.gui.visualization.RunVisualizer
-
- drawEvent(OutlierEvent, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- drawGTClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
-
- drawMacroClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
-
- drawMicroClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
-
- drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.ClusterPanel
-
- drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.OutlierPanel
-
- drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.PointPanel
-
- drawOutliers(Vector<MyBaseOutlierDetector.Outlier>, Color) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- drawPoint(DataPoint, boolean, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- drawPoint(DataPoint) - Method in class moa.gui.visualization.StreamPanel
-
- driftConfidence - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- driftConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- driftConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- driftDetectionMethod - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- driftDetectionMethod - Variable in class moa.learners.ChangeDetectorLearner
-
- DriftDetectionMethodClassifier - Class in moa.classifiers.drift
-
Class for handling concept drift datasets with a wrapper on a
classifier.
- DriftDetectionMethodClassifier() - Constructor for class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- driftDetectionMethodOption - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- driftDetectionMethodOption - Variable in class moa.learners.ChangeDetectorLearner
-
- DriftDetectionOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- driftInstance - Variable in class moa.streams.ConceptDriftRealStream
-
- driftStream - Variable in class moa.streams.ConceptDriftRealStream
-
- driftStream - Variable in class moa.streams.ConceptDriftStream
-
- driftstreamOption - Variable in class moa.streams.ConceptDriftRealStream
-
- driftstreamOption - Variable in class moa.streams.ConceptDriftStream
-
- dumpFileOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- dumpFileOption - Variable in class moa.tasks.EvaluateClustering
-
- dumpFileOption - Variable in class moa.tasks.EvaluateConceptDrift
-
- dumpFileOption - Variable in class moa.tasks.EvaluateInterleavedChunks
-
Allows to define the output file name and location.
- dumpFileOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- dumpFileOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
-
- dumpFileOption - Variable in class moa.tasks.EvaluatePrequential
-
- dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialRegression
-
- g - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
-
- gamma - Variable in class moa.classifiers.meta.OnlineSmoothBoost
-
- gammaOption - Variable in class moa.classifiers.meta.OnlineSmoothBoost
-
- gammaOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- GaussianEstimator - Class in moa.core
-
Gaussian incremental estimator that uses incremental method that is more resistant to floating point imprecision.
- GaussianEstimator() - Constructor for class moa.core.GaussianEstimator
-
- gaussianMeans(Clustering, Clustering) - Static method in class moa.clusterers.KMeans
-
- GaussianNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
-
Class for observing the class data distribution for a numeric attribute using gaussian estimators.
- GaussianNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- General - Class in moa.evaluation
-
- General() - Constructor for class moa.evaluation.General
-
- generateCentroids() - Method in class moa.streams.generators.RandomRBFGenerator
-
- generateCentroids() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
-
- generateConditional(double[], boolean[][]) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
GenerateConditional.
- generateExample() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Generates one example of the dataset.
- generateExamples() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Generates all examples of the dataset.
- generateFinished() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Generates a comment string that documentats the data generator.
- generateHeader() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- generateHeader() - Method in class moa.streams.generators.HyperplaneGenerator
-
- generateHeader() - Method in class moa.streams.generators.RandomRBFGenerator
-
- generateHeader() - Method in class moa.streams.generators.RandomTreeGenerator
-
- generateMultilabelHeader(Instances) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
GenerateMultilabelHeader.
- generateRandomTree() - Method in class moa.streams.generators.RandomTreeGenerator
-
- generateRandomTreeNode(int, ArrayList<Integer>, double[], double[], Random) - Method in class moa.streams.generators.RandomTreeGenerator
-
- generateSizeOption - Variable in class moa.tasks.MeasureStreamSpeed
-
- generateStart() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Generates a comment string that documentates the data generator.
- generatorTipText() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Returns the tooltip displayed in the GUI.
- GeometricMovingAverageDM - Class in moa.classifiers.core.driftdetection
-
Drift detection method based in Geometric Moving Average Test
- GeometricMovingAverageDM() - Constructor for class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
-
- get() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
returns the first element and removes it from the heap.
- get(int) - Method in class moa.cluster.Clustering
-
remove a cluster from the clustering
- get(int) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
-
- get(int) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
-
- get(int) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
-
- get(int) - Method in class moa.clusterers.outliers.MCOD.StreamObj
-
- get(int) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
-
- get(int) - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunctions.EuclideanCoordinate
-
A method to access the index
-th component of the coordinate.
- get(int) - Method in class moa.clusterers.outliers.utils.mtree.utils.Pair
-
Accesses an object by its index.
- get(int) - Method in class moa.core.AutoExpandVector
-
- get(String, String) - Static method in class moa.gui.GUIDefaults
-
returns the value for the specified property, if non-existent then the
default value.
- get(int) - Method in class moa.recommender.rc.utils.DenseVector
-
- get(int) - Method in class moa.recommender.rc.utils.SparseVector
-
- get(int) - Method in class moa.recommender.rc.utils.Vector
-
- Get_nn_before() - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- Get_nn_before() - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- getActiveXDim() - Method in class moa.gui.visualization.StreamOutlierPanel
-
- getActiveXDim() - Method in class moa.gui.visualization.StreamPanel
-
- getActiveYDim() - Method in class moa.gui.visualization.StreamOutlierPanel
-
- getActiveYDim() - Method in class moa.gui.visualization.StreamPanel
-
- getAcuity() - Method in class moa.clusterers.CobWeb
-
get the acuity value
- getAlgorithm0ValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- getAlgorithm0ValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- getAlgorithm1ValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- getAlgorithm1ValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- getAllValues(int) - Method in class moa.evaluation.MeasureCollection
-
- getAlternateTree() - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- getAMRules() - Method in class moa.classifiers.rules.core.Rule.Builder
-
- getArrayCopy() - Method in class moa.core.DoubleVector
-
- getArrayRef() - Method in class moa.core.DoubleVector
-
- getAsCLIString() - Method in class moa.options.Options
-
- getAttributeIndices() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Gets the range of attributes used in the calculation of the distance.
- getAttributeIndices() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Gets the range of attributes used in the calculation of the distance.
- getAttributeNameString(int) - Method in class moa.classifiers.AbstractClassifier
-
Gets the name of an attribute from the header.
- getAttributeNameString(int) - Method in class moa.clusterers.AbstractClusterer
-
- getAttributeNameString(InstancesHeader, int) - Static method in class moa.core.InstancesHeader
-
- getAttributeObservers() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getAttributeValue() - Method in class moa.classifiers.rules.Predicates
-
- getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
-
Returns an array with the attributes that the test depends on.
- getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
-
- getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
-
- getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
-
- getAttsTestDependsOn() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- getAvgRatingItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getAvgRatingItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- getAvgRatingUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getAvgRatingUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- getAWTRenderer() - Method in class moa.classifiers.AbstractClassifier
-
Returns the AWT Renderer
- getAWTRenderer() - Method in class moa.clusterers.AbstractClusterer
-
- getAWTRenderer() - Method in interface moa.gui.AWTRenderable
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
-
Gets the best split suggestion given a criterion and a class distribution
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
-
- getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
-
- getBestSecondBestEntropy(DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
-
- getBestSplitSuggestions(SplitCriterion) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getBestSplitSuggestions(SplitCriterion, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
Return the best split suggestions for this node using the given split criteria
- getBestSplitSuggestions(SplitCriterion, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
-
- getBestSplitSuggestions(SplitCriterion, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- getBestSplitSuggestions(SplitCriterion, ORTO) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
Return the best split suggestions for this node using the given split criteria
- getBestSuggestion() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getBucketsUsed() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getBuffer() - Method in class moa.clusterers.clustree.Entry
-
Getter for the buffer.
- getBuilder() - Method in class moa.classifiers.rules.core.Rule
-
- getBytesRead() - Method in class moa.core.InputStreamProgressMonitor
-
- getBytesRemaining() - Method in class moa.core.InputStreamProgressMonitor
-
- getCapabilities() - Method in class weka.classifiers.meta.MOA
-
Returns the Capabilities of this classifier.
- getCenter() - Method in class moa.cluster.CFCluster
-
- getCenter() - Method in class moa.cluster.Cluster
-
- getCenter() - Method in class moa.cluster.SphereCluster
-
- getCenter() - Method in class moa.clusterers.clustream.ClustreamKernel
-
- getCenter() - Method in class moa.clusterers.clustree.ClusKernel
-
- getCenter() - Method in class moa.clusterers.denstream.MicroCluster
-
- getCenterDistance(Instance) - Method in class moa.cluster.SphereCluster
-
- getCenterDistance(SphereCluster) - Method in class moa.cluster.SphereCluster
-
- getCF() - Method in class moa.cluster.CFCluster
-
- getCF() - Method in class moa.clusterers.clustream.ClustreamKernel
-
- getCF() - Method in class moa.clusterers.clustree.ClusKernel
-
- getCF() - Method in class moa.clusterers.denstream.MicroCluster
-
- getCF() - Method in class moa.clusterers.macro.NonConvexCluster
-
- getCFCluster() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
-
- getChange() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Gets whether there is change detected.
- getChange() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getChange() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Gets whether there is change detected.
- getChange() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- getChild(int) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- getChild(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- getChild(int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- getChild(int) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- getChild() - Method in class moa.clusterers.clustree.Entry
-
Return the reference to the child of this Entry
to navigate
in the tree.
- getChildIndex(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- getChildIndex(ORTO.Node) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- getChildIndex(ORTO.Node) - Method in class moa.classifiers.trees.ORTO.Node
-
- getChosenIndex() - Method in class moa.options.MultiChoiceOption
-
- getChosenLabel() - Method in class moa.options.MultiChoiceOption
-
- getChosenObjectCLIString(Class<?>) - Method in class moa.gui.ClassOptionSelectionPanel
-
- getChosenObjectCLIString(Class<?>) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
-
- getClassDistribution(int) - Method in class moa.evaluation.MembershipMatrix
-
- getClassDistributionByLabel(int) - Method in class moa.evaluation.MembershipMatrix
-
- getClassDistsResultingFromBinarySplit(double) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- getClassDistsResultingFromBinarySplit(double) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- getClassDistsResultingFromBinarySplit(int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- getClassDistsResultingFromMultiwaySplit(int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- getClassifier() - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
-
- getClassifier() - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
-
- getClassifier() - Method in class weka.classifiers.meta.MOA
-
Returns the current MOA classifier in use.
- getClassLabel() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
Return the label for the DataObject
.
- getClassLabelString(int) - Method in class moa.classifiers.AbstractClassifier
-
Gets the name of a label of the class from the header.
- getClassLabelString(int) - Method in class moa.clusterers.AbstractClusterer
-
- getClassLabelString(InstancesHeader, int) - Static method in class moa.core.InstancesHeader
-
- getClassNames() - Method in class moa.options.ClassOptionWithNames
-
- getClassNameString() - Method in class moa.classifiers.AbstractClassifier
-
Gets the name of the attribute of the class from the header.
- getClassNameString() - Method in class moa.clusterers.AbstractClusterer
-
- getClassNameString(InstancesHeader) - Static method in class moa.core.InstancesHeader
-
- getClassSeparability() - Method in class moa.evaluation.CMM_GTAnalysis
-
Calculates how well the original clusters are separable.
- getClassSum(int) - Method in class moa.evaluation.MembershipMatrix
-
- getClassSumByLabel(int) - Method in class moa.evaluation.MembershipMatrix
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
-
- getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
-
- getClassVotes(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
-
- getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
-
- getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
-
- getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
-
- getCLIChar() - Method in class moa.options.AbstractOption
-
- getCLIChar() - Method in interface moa.options.Option
-
Gets the Command Line Interface text of this option
- getCLICreationString(Class<?>) - Method in class moa.options.AbstractOptionHandler
-
- getCLICreationString(Class<?>) - Method in interface moa.options.OptionHandler
-
Gets the Command Line Interface text to create the object
- getClock() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getClusterClassWeight(int, int) - Method in class moa.evaluation.MembershipMatrix
-
- getClusterClassWeightByLabel(int, int) - Method in class moa.evaluation.MembershipMatrix
-
- getClusterer0() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- getClusterer0() - Method in class moa.gui.clustertab.ClusteringSetupTab
-
- getClusterer0() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- getClusterer1() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- getClusterer1() - Method in class moa.gui.clustertab.ClusteringSetupTab
-
- getClusterer1() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- getClusterID() - Method in class moa.gui.visualization.ClusterPanel
-
- getClusterID() - Method in class moa.gui.visualization.OutlierPanel
-
- getClustering() - Method in class moa.cluster.Clustering
-
- getClustering(long, int) - Method in class moa.clusterers.clustree.ClusTree
-
- getClustering(Clustering) - Method in class moa.clusterers.macro.AbstractMacroClusterer
-
- getClustering(Clustering) - Method in class moa.clusterers.macro.dbscan.DBScan
-
- getClustering() - Method in interface moa.clusterers.macro.IDenseMacroCluster
-
- getClustering(Clustering) - Method in interface moa.clusterers.macro.IMacroClusterer
-
- getClustering() - Method in class moa.clusterers.macro.NonConvexCluster
-
- getClusteringCopy() - Method in class moa.cluster.Clustering
-
- getClusteringResult() - Method in interface moa.clusterers.Clusterer
-
- getClusteringResult() - Method in class moa.clusterers.ClusterGenerator
-
- getClusteringResult() - Method in class moa.clusterers.clustream.Clustream
-
- getClusteringResult() - Method in class moa.clusterers.clustream.WithKmeans
-
- getClusteringResult(Clustering) - Method in class moa.clusterers.clustream.WithKmeans
-
- getClusteringResult() - Method in class moa.clusterers.clustree.ClusTree
-
- getClusteringResult() - Method in class moa.clusterers.CobWeb
-
- getClusteringResult() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- getClusteringResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getClusteringResult() - Method in class moa.clusterers.streamkm.StreamKM
-
- getClusteringResult() - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- getClusterLabel() - Method in class moa.gui.visualization.ClusterPanel
-
- getClusterLabel() - Method in class moa.gui.visualization.OutlierPanel
-
- getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.cluster.Cluster
-
- getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.cluster.SphereCluster
-
- getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.clusterers.clustream.ClustreamKernel
-
- getClusterSum(int) - Method in class moa.evaluation.MembershipMatrix
-
- getColor(int) - Static method in class moa.clusterers.macro.ColorArray
-
- getColor() - Method in class moa.clusterers.macro.ColorObject
-
- getColumnCount() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
-
- getColumnCount() - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
-
- getColumnCount() - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
-
- getColumnCount() - Method in class moa.gui.TaskManagerPanel.TaskTableModel
-
- getColumnName(int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
-
- getColumnName(int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
-
- getColumnName(int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
-
- getColumnName(int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
-
- getConfidence(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- getConnectionValue(CMM_GTAnalysis.CMMPoint, int) - Method in class moa.evaluation.CMM_GTAnalysis
-
Calculate the connection of a point to a cluster
- getCountBelow(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- getCountNominalAttrib(ArrayList<Predicates>) - Method in class moa.classifiers.rules.RuleClassifier
-
- getCPUSecondsElapsed() - Method in class moa.tasks.TaskThread
-
- getCreationTime() - Method in class moa.clusterers.denstream.MicroCluster
-
- getCumulativeSum() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- getCurrentActivityDescription() - Method in class moa.tasks.NullMonitor
-
- getCurrentActivityDescription() - Method in class moa.tasks.StandardTaskMonitor
-
- getCurrentActivityDescription() - Method in interface moa.tasks.TaskMonitor
-
Gets the description of the current activity.
- getCurrentActivityFracComplete() - Method in class moa.tasks.TaskThread
-
- getCurrentActivityFractionComplete() - Method in class moa.tasks.NullMonitor
-
- getCurrentActivityFractionComplete() - Method in class moa.tasks.StandardTaskMonitor
-
- getCurrentActivityFractionComplete() - Method in interface moa.tasks.TaskMonitor
-
Gets the percentage done of the current activity
- getCurrentActivityString() - Method in class moa.tasks.TaskThread
-
- getCurrenTask() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- getCurrentError() - Method in class moa.classifiers.rules.core.Rule
-
- getCurrentError() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getCurrentError() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getCurrentError() - Method in class moa.classifiers.rules.functions.Perceptron
-
- getCurrentError() - Method in class moa.classifiers.rules.functions.TargetMean
-
- getCurrentStatusString() - Method in class moa.tasks.TaskThread
-
- getCurrentTimestamp() - Static method in class moa.gui.visualization.RunOutlierVisualizer
-
- getCurrentTimestamp() - Static method in class moa.gui.visualization.RunVisualizer
-
- getCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
-
Gets the custom editor component.
- getCutoff() - Method in class moa.clusterers.CobWeb
-
get the cutoff
- getData() - Method in class moa.clusterers.clustree.Entry
-
Getter for the data.
- getData() - Method in class moa.recommender.data.MemRecommenderData
-
- getData() - Method in interface moa.recommender.data.RecommenderData
-
- getData() - Method in class moa.recommender.predictor.BaselinePredictor
-
- getData() - Method in class moa.recommender.predictor.BRISMFPredictor
-
- getData() - Method in interface moa.recommender.predictor.RatingPredictor
-
- getData() - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
-
- getData() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- getData() - Method in interface moa.recommender.rc.predictor.RatingPredictor
-
- getDataObjectArray() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Returns an array of all the DataObject
s in the set.
- getDataset(int, int) - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- getDataSetsPerClass() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Separates the objects in this data set according to their class label
- getDecayHorizon() - Method in class moa.streams.clustering.ClusteringStream
-
- getDecayThreshold() - Method in class moa.streams.clustering.ClusteringStream
-
- getDefaultCLIString() - Method in class moa.options.AbstractClassOption
-
- getDefaultCLIString() - Method in class moa.options.FlagOption
-
- getDefaultCLIString() - Method in class moa.options.FloatOption
-
- getDefaultCLIString() - Method in class moa.options.IntOption
-
- getDefaultCLIString() - Method in class moa.options.ListOption
-
- getDefaultCLIString() - Method in class moa.options.MultiChoiceOption
-
- getDefaultCLIString() - Method in interface moa.options.Option
-
Gets the Command Line Interface text
- getDefaultCLIString() - Method in class moa.options.StringOption
-
- getDefaultEnabled() - Method in class moa.evaluation.Accuracy
-
- getDefaultEnabled() - Method in class moa.evaluation.ChangeDetectionMeasures
-
- getDefaultEnabled() - Method in class moa.evaluation.CMM
-
- getDefaultEnabled() - Method in class moa.evaluation.EntropyCollection
-
- getDefaultEnabled() - Method in class moa.evaluation.MeasureCollection
-
- getDefaultEnabled() - Method in class moa.evaluation.OutlierPerformance
-
- getDefaultEnabled() - Method in class moa.evaluation.RegressionAccuracy
-
- getDefaultEnabled() - Method in class moa.evaluation.SilhouetteCoefficient
-
- getDefaultEnabled() - Method in class moa.evaluation.SSQ
-
- getDefaultEnabled() - Method in class moa.evaluation.StatisticalCollection
-
- getDefaultFileExtension() - Method in class moa.options.FileOption
-
- getDefaultHeight() - Method in class moa.clusterers.clustree.ClusTree
-
- getDelay() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Gets the length of the delay in the change detected.
- getDelay() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Gets the length of the delay in the change detected.
- getDescription(StringBuilder, int) - Method in class moa.classifiers.AbstractClassifier
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.AttributeSplitSuggestion
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Returns a string representation of the model.
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
-
- getDescription(StringBuilder, int) - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Returns a string representation of the model.
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.CusumDM
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.DDM
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EDDM
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.Rule
-
MOA GUI output
- getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.UniformWeightedVote
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.Predicates
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassification
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.Node
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ORTO.Node
-
- getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
- getDescription(StringBuilder, int) - Method in class moa.cluster.Cluster
-
- getDescription(StringBuilder, int) - Method in class moa.cluster.Clustering
-
- getDescription(StringBuilder, int) - Method in class moa.clusterers.AbstractClusterer
-
- getDescription(StringBuilder, int) - Method in class moa.clusterers.denstream.Timestamp
-
- getDescription(StringBuilder, int) - Method in class moa.core.AutoExpandVector
-
- getDescription(StringBuilder, int) - Method in class moa.core.DoubleVector
-
- getDescription(StringBuilder, int) - Method in class moa.core.GaussianEstimator
-
- getDescription(StringBuilder, int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- getDescription(StringBuilder, int) - Method in class moa.core.Measurement
-
- getDescription(StringBuilder, int) - Method in class moa.core.utils.Converter
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.LearningCurve
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.LearningEvaluation
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.MeasureCollection
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- getDescription(StringBuilder, int) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- getDescription() - Method in class moa.gui.AbstractTabPanel
-
Returns a short description (can be used as tool tip) of the tab, or contributor, etc.
- getDescription() - Method in class moa.gui.ClassificationTabPanel
-
- getDescription() - Method in class moa.gui.clustertab.ClusteringTabPanel
-
- getDescription() - Method in class moa.gui.ConceptDriftTabPanel
-
- getDescription() - Method in class moa.gui.FileExtensionFilter
-
- getDescription() - Method in class moa.gui.outliertab.OutlierTabPanel
-
- getDescription() - Method in class moa.gui.RegressionTabPanel
-
- getDescription(StringBuilder, int) - Method in interface moa.MOAObject
-
Returns a string representation of this object.
- getDescription(StringBuilder, int) - Method in class moa.options.AbstractOption
-
- getDescription(StringBuilder, int) - Method in class moa.options.Options
-
- getDescription(StringBuilder, int) - Method in class moa.recommender.data.MemRecommenderData
-
- getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.JesterDataset
-
- getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- getDescription(StringBuilder, int) - Method in class moa.recommender.predictor.BaselinePredictor
-
- getDescription(StringBuilder, int) - Method in class moa.recommender.predictor.BRISMFPredictor
-
- getDescription(StringBuilder, int) - Method in class moa.streams.ArffFileStream
-
- getDescription(StringBuilder, int) - Method in class moa.streams.CachedInstancesStream
-
- getDescription(StringBuilder, int) - Method in class moa.streams.clustering.FileStream
-
- getDescription(StringBuilder, int) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
TOOLS
- getDescription(StringBuilder, int) - Method in class moa.streams.ConceptDriftRealStream
-
- getDescription(StringBuilder, int) - Method in class moa.streams.ConceptDriftStream
-
- getDescription(StringBuilder, int) - Method in class moa.streams.FilteredStream
-
- getDescription(StringBuilder, int) - Method in class moa.streams.filters.AddNoiseFilter
-
- getDescription(StringBuilder, int) - Method in class moa.streams.filters.CacheFilter
-
- getDescription(StringBuilder, int) - Method in class moa.streams.filters.ReplacingMissingValuesFilter
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.AgrawalGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.HyperplaneGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.LEDGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.LEDGeneratorDrift
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomRBFGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomRBFGeneratorDrift
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomTreeGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.SEAGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.STAGGERGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.WaveformGenerator
-
- getDescription(StringBuilder, int) - Method in class moa.streams.generators.WaveformGeneratorDrift
-
- getDescription(StringBuilder, int) - Method in class moa.streams.MultiFilteredStream
-
- getDescription(StringBuilder, int) - Method in class moa.tasks.AbstractTask
-
- getDescription(StringBuilder, int) - Method in class moa.tasks.FailedTaskReport
-
- getDescriptions() - Static method in enum moa.tasks.Plot.LegendLocation
-
Gets an array of string descriptions - one for each enum value.
- getDescriptions() - Static method in enum moa.tasks.Plot.LegendType
-
Gets an array of string descriptions - one for each enum value.
- getDescriptions() - Static method in enum moa.tasks.Plot.PlotStyle
-
Gets an array of string descriptions = one for each enum value.
- getDescriptions() - Static method in enum moa.tasks.Plot.Terminal
-
Gets an array of string descriptions - one for each enum value.
- getDetect() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getDistance(DataPoint) - Method in class moa.gui.visualization.DataPoint
-
- getDistanceFunction() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
returns the distance function currently in use.
- getDistanceFunction() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
returns the distance function currently in use.
- getDistances() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the distances to the kNearest or 1 nearest neighbour currently
found with either the kNearestNeighbours or the nearestNeighbour method.
- getDistances() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Returns the distances of the k nearest neighbours.
- getDistances() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Returns the distances of the k nearest neighbours.
- getDistanceVector(Instance) - Method in class moa.cluster.SphereCluster
-
- getDistanceVector(SphereCluster) - Method in class moa.cluster.SphereCluster
-
- getDontNormalize() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Gets whether if the attribute values are to be normazlied in distance
calculation.
- getEditComponent() - Method in class moa.options.AbstractClassOption
-
- getEditComponent() - Method in class moa.options.AbstractOption
-
- getEditComponent() - Method in class moa.options.ClassOption
-
- getEditComponent() - Method in class moa.options.ClassOptionWithNames
-
- getEditComponent() - Method in class moa.options.FileOption
-
- getEditComponent() - Method in class moa.options.FlagOption
-
- getEditComponent() - Method in class moa.options.FloatOption
-
- getEditComponent() - Method in class moa.options.IntOption
-
- getEditComponent() - Method in class moa.options.MultiChoiceOption
-
- getEditComponent() - Method in interface moa.options.Option
-
Gets the GUI component to edit
- getEditComponent() - Method in class moa.options.WEKAClassOption
-
- getEditedOption() - Method in class moa.gui.ClassOptionEditComponent
-
- getEditedOption() - Method in class moa.gui.ClassOptionWithNamesEditComponent
-
- getEditedOption() - Method in class moa.gui.FileOptionEditComponent
-
- getEditedOption() - Method in class moa.gui.FlagOptionEditComponent
-
- getEditedOption() - Method in class moa.gui.FloatOptionEditComponent
-
- getEditedOption() - Method in class moa.gui.IntOptionEditComponent
-
- getEditedOption() - Method in class moa.gui.MultiChoiceOptionEditComponent
-
- getEditedOption() - Method in interface moa.gui.OptionEditComponent
-
Gets the option of this component
- getEditedOption() - Method in class moa.gui.StringOptionEditComponent
-
- getEditedOption() - Method in class moa.gui.WEKAClassOptionEditComponent
-
- getEMClusteringVariances(double[][], int) - Method in class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
-
Performs an EM clustering on the provided data set
!! Only the variances are calculated and used for point assignments !
!!! the number k' of returned clusters might be smaller than k !!!
- getEMClusteringVariancesBestChoice(double[][], int, int) - Method in class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
-
- getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OCBoost
-
- getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OzaBoost
-
- getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- getEntries() - Method in class moa.clusterers.clustree.Node
-
Return an array with references to the children of this node.
- getError(Instance) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
Return the error for a given instance
- getErrorEstimation() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- getErrorEstimation() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- getErrorEstimation() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
-
- getErrorWidth() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- getErrorWidth() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- getErrorWidth() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
-
- getEstimation() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Gets the prediction of next values.
- getEstimation() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getEstimation() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Gets the prediction of next values.
- getEstimation() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- getEstimation() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
-
Gets the prediction of next values.
- getEstimatorInfo() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getEvalPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- getEvalPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getEvaluationFrequency() - Method in class moa.streams.clustering.ClusteringStream
-
- getEventsList() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- getEventsList() - Method in interface moa.streams.generators.cd.ConceptDriftGenerator
-
- getEventsList() - Method in class moa.tasks.ConceptDriftMainTask
-
- getEventsList() - Method in class moa.tasks.RegressionMainTask
-
- getEventType(int) - Method in class moa.evaluation.MeasureCollection
-
- getFailureReason() - Method in class moa.tasks.FailedTaskReport
-
- getFeatures() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
Returns the features (label attribute excluded).
- getFeaturesAsArray() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Returns an array with all the features of all the objects in the set.
- getFFRatio(int) - Method in class moa.classifiers.trees.ORTO.OptionNode
-
- getFile() - Method in class moa.options.FileOption
-
- getFinalResult() - Method in class moa.tasks.TaskThread
-
- getFirst() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
returns the first element in the list.
- getFirst() - Method in class moa.recommender.rc.utils.Pair
-
- getFractionCorrectlyClassified() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- getFractionCorrectlyClassified() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
-
- getFractionCorrectlyClassified() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- getFractionCorrectlyClassified() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- getFractionCorrectlyClassified() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- getFractionIncorrectlyClassified() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- getFractionIncorrectlyClassified() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
-
- getFractionIncorrectlyClassified() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- getFractionIncorrectlyClassified() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- getFractionIncorrectlyClassified() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- getGeneratingClusters() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- getGenerator() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Returns the current MOA stream generator in use.
- getGlobalMean() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getGlobalMean() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getGraphCanvas() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- getGraphCanvas() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getGroundTruth() - Method in class moa.cluster.Cluster
-
- getGT0Cluster(int) - Method in class moa.evaluation.CMM_GTAnalysis
-
Return cluster
- getHalf(boolean) - Method in class moa.classifiers.meta.DACC
-
Returns the best (or worst) half of classifiers in the adaptive ensemble.
- getHeader() - Method in class moa.streams.ArffFileStream
-
- getHeader() - Method in class moa.streams.CachedInstancesStream
-
- getHeader() - Method in class moa.streams.clustering.FileStream
-
- getHeader() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- getHeader() - Method in class moa.streams.ConceptDriftRealStream
-
- getHeader() - Method in class moa.streams.ConceptDriftStream
-
- getHeader() - Method in class moa.streams.FilteredStream
-
- getHeader() - Method in class moa.streams.filters.AddNoiseFilter
-
- getHeader() - Method in class moa.streams.filters.CacheFilter
-
- getHeader() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
-
- getHeader() - Method in class moa.streams.generators.AgrawalGenerator
-
- getHeader() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- getHeader() - Method in class moa.streams.generators.HyperplaneGenerator
-
- getHeader() - Method in class moa.streams.generators.LEDGenerator
-
- getHeader() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- getHeader() - Method in class moa.streams.generators.multilabel.MultilabelArffFileStream
-
- getHeader() - Method in class moa.streams.generators.RandomRBFGenerator
-
- getHeader() - Method in class moa.streams.generators.RandomTreeGenerator
-
- getHeader() - Method in class moa.streams.generators.SEAGenerator
-
- getHeader() - Method in class moa.streams.generators.STAGGERGenerator
-
- getHeader() - Method in class moa.streams.generators.WaveformGenerator
-
- getHeader() - Method in interface moa.streams.InstanceStream
-
Gets the header of this stream.
- getHeader() - Method in class moa.streams.MultiFilteredStream
-
- getHeadOptionCount() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- getHeight() - Method in class moa.clusterers.clustree.ClusTree
-
Return the current height of the tree.
- getHelp(StringBuilder, int) - Method in class moa.options.Options
-
- getHelpString() - Method in class moa.options.Options
-
- getHelpText() - Method in class moa.gui.OptionsConfigurationPanel
-
- getHighlightedClusterPanel() - Method in class moa.gui.visualization.StreamPanel
-
- getHighlightedOutlierPanel() - Method in class moa.gui.visualization.StreamOutlierPanel
-
- getHullDistance(SphereCluster) - Method in class moa.cluster.SphereCluster
-
- getId() - Method in class moa.cluster.Cluster
-
- getId() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
Returns the id for the DataObject
.
- getIdxs() - Method in class moa.recommender.rc.utils.DenseVector
-
- getIdxs() - Method in class moa.recommender.rc.utils.SparseVector
-
- getIdxs() - Method in class moa.recommender.rc.utils.Vector
-
- getInclusionProbability(Instance) - Method in class moa.cluster.CFCluster
-
- getInclusionProbability(Instance) - Method in class moa.cluster.Cluster
-
Returns the probability of the given point belonging to
this cluster.
- getInclusionProbability(Instance) - Method in class moa.cluster.SphereCluster
-
- getInclusionProbability(Instance) - Method in class moa.clusterers.clustream.ClustreamKernel
-
See interface Cluster
- getInclusionProbability(Instance) - Method in class moa.clusterers.clustree.ClusKernel
-
- getInclusionProbability(Instance) - Method in class moa.clusterers.denstream.MicroCluster
-
- getInclusionProbability(Instance) - Method in class moa.clusterers.macro.NonConvexCluster
-
- getInclusionProbability(CMM_GTAnalysis.CMMPoint) - Method in class moa.evaluation.CMM_GTAnalysis.GTCluster
-
Calculate the probability of the point being covered through the cluster
- getInfo() - Method in class moa.cluster.Cluster
-
- getInfo(int, int) - Method in class moa.gui.visualization.DataPoint
-
- getInfo() - Method in class moa.gui.visualization.OutlierPanel
-
- getInitalBuildTimestamp() - Method in class moa.evaluation.MembershipMatrix
-
- getInitialDirectory() - Static method in class moa.gui.GUIDefaults
-
Returns the initial directory for the file chooser used for opening
datasets.
- getInputValues() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getInstance() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
Return the Instance
of the DataObject
.
- getInstances() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
returns the instances currently set.
- getInstances() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
returns the instances currently set.
- getInstances() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
returns the instances currently set.
- getInstancesSeen() - Method in class moa.classifiers.rules.core.Rule
-
- getInstancesSeen() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getInstancesSeen() - Method in class moa.classifiers.rules.functions.Perceptron
-
- getInstanceValues(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- GetInterval() - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.ProgressInfo
-
- getInvertSelection() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Gets whether the matching sense of attribute indices is inverted or not.
- getInvertSelection() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Gets whether the matching sense of attribute indices is inverted or not.
- getIrrelevantEntry(double) - Method in class moa.clusterers.clustree.Node
-
If there exists an entry, whose relevance is under the threshold given
as a parameter to the tree, this entry is returned.
- getItemFeatures(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- getItems() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getItems() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getKappaStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- getKappaStatistic() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- getKappaTemporalStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- getKappaTemporalStatistic() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- getKthNearest() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
returns the kth nearest element or null if none there.
- getL() - Method in class moa.core.utils.Converter
-
- getLabel() - Method in class moa.evaluation.CMM_GTAnalysis.GTCluster
-
The original class label the cluster represents
- getLambda() - Method in class moa.classifiers.functions.SGD
-
Get the current value of lambda
- getLambda() - Method in class moa.classifiers.functions.SGDMultiClass
-
Get the current value of lambda
- getLambda() - Method in class moa.classifiers.functions.SPegasos
-
Get the current value of lambda
- getLast() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
returns the last element in the list.
- getLastEditTimestamp() - Method in class moa.clusterers.denstream.MicroCluster
-
- getLastValue(int) - Method in class moa.evaluation.MeasureCollection
-
- getLatestPreviewGrabTimeSeconds() - Method in class moa.tasks.TaskThread
-
- getLatestResultPreview() - Method in class moa.tasks.NullMonitor
-
- getLatestResultPreview() - Method in class moa.tasks.StandardTaskMonitor
-
- getLatestResultPreview() - Method in interface moa.tasks.TaskMonitor
-
Gets the current result to preview
- getLatestResultPreview() - Method in class moa.tasks.TaskThread
-
- getLearnerToUse(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getLearnerToUse(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getLearningNode() - Method in class moa.classifiers.rules.core.Rule
-
getLearningNode Method This is the way to pass info for other classes.
- getLearningRate() - Method in class moa.classifiers.functions.SGD
-
Get the learning rate.
- getLearningRate() - Method in class moa.classifiers.functions.SGDMultiClass
-
Get the learning rate.
- getLeftStreamPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- getLeftStreamPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getLevel() - Method in class moa.classifiers.trees.ORTO.Node
-
- getLevel(ClusTree) - Method in class moa.clusterers.clustree.Node
-
Returns the level at which this node is in the tree.
- getList() - Method in class moa.options.ListOption
-
- getLogPanel() - Method in class moa.gui.clustertab.ClusteringSetupTab
-
- getLogPanel() - Method in class moa.gui.outliertab.OutlierSetupTab
-
- getLossFunction() - Method in class moa.classifiers.functions.SGD
-
Get the current loss function.
- getLossFunction() - Method in class moa.classifiers.functions.SGDMultiClass
-
Get the current loss function.
- getLossFunction() - Method in class moa.classifiers.functions.SPegasos
-
Get the current loss function.
- getLowerQuartile(int) - Method in class moa.evaluation.MeasureCollection
-
- getMaxAttValsObserved() - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- getMaxInclusionProbability(Instance) - Method in class moa.cluster.Clustering
-
- getMAXIndexes() - Method in class moa.classifiers.meta.DACC
-
Returns the classifiers that vote for the final prediction
when the MAX combination function is selected
- getMaxInstInLeaf() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Get the maximum number of instances in a leaf.
- getMaxRating() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getMaxRating() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getMaxRelativeNodeWidth(double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the maximum attribute width of instances/points
in a KDTreeNode relative to the whole dataset.
- getMaxValue(int) - Method in class moa.evaluation.MeasureCollection
-
- getMaxValue() - Method in class moa.options.FloatOption
-
- getMaxValue() - Method in class moa.options.IntOption
-
- getMean() - Method in class moa.core.GaussianEstimator
-
- getMean(int) - Method in class moa.evaluation.MeasureCollection
-
- getMeanError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- getMeanError() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- getMeanRunningTime() - Method in class moa.evaluation.MeasureCollection
-
- getMeasure(String) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the value of the named measure.
- getMeasureCollection() - Method in enum moa.gui.PreviewPanel.TypePanel
-
- getMeasurement(int, int) - Method in class moa.evaluation.LearningCurve
-
- getMeasurementName(int) - Method in class moa.evaluation.LearningCurve
-
- getMeasurementNamed(String, Measurement[]) - Static method in class moa.core.Measurement
-
- getMeasurements() - Method in class moa.evaluation.LearningEvaluation
-
- getMeasurementsDescription(Measurement[], StringBuilder, int) - Static method in class moa.core.Measurement
-
- getMeasurePerformance() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Gets whether performance statistics are being calculated or not.
- getMeasures() - Method in class moa.gui.clustertab.ClusteringSetupTab
-
- getMeasures() - Method in class moa.gui.outliertab.OutlierSetupTab
-
- getMeasureSelected() - Method in class moa.gui.visualization.GraphCanvas
-
- getMeasureValue(String) - Method in class moa.cluster.Cluster
-
- getMeasureValue(String) - Method in class moa.gui.visualization.DataPoint
-
- getMedian(int) - Method in class moa.evaluation.MeasureCollection
-
- GetMemoryUsage() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
-
- getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- getMeritOfSplit(double[], double[][]) - Method in interface moa.classifiers.core.splitcriteria.SplitCriterion
-
Computes the merit of splitting for a given
ditribution before the split and after it.
- getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
-
- getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
-
- getMessage() - Method in class moa.streams.clustering.ClusterEvent
-
- getMicroClustering() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- getMicroClusteringResult() - Method in class moa.clusterers.AbstractClusterer
-
- getMicroClusteringResult() - Method in interface moa.clusterers.Clusterer
-
- getMicroClusteringResult() - Method in class moa.clusterers.ClusterGenerator
-
- getMicroClusteringResult() - Method in class moa.clusterers.clustream.Clustream
-
- getMicroClusteringResult() - Method in class moa.clusterers.clustream.WithKmeans
-
- getMicroClusteringResult() - Method in class moa.clusterers.clustree.ClusTree
-
- getMicroClusteringResult() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- getMicroClusteringResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getMicroClusters() - Method in interface moa.clusterers.macro.IDenseMacroCluster
-
- getMicroClusters() - Method in class moa.clusterers.macro.NonConvexCluster
-
- getMiddle(double[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
-
Returns value in the middle of the two parameter values.
- getMinBoxRelWidth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Gets the minimum relative box width.
- getMinimumValue() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- GetMinPrecNeigh(Long) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- GetMinPrecNeigh(Long) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- getMinRating() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getMinRating() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getMinValue(int) - Method in class moa.evaluation.MeasureCollection
-
- getMinValue() - Method in class moa.options.FloatOption
-
- getMinValue() - Method in class moa.options.IntOption
-
- getModelAttIndexToInstanceAttIndex(int, Instance) - Method in class moa.classifiers.rules.AbstractAMRules
-
- getModelContext() - Method in class moa.classifiers.AbstractClassifier
-
- getModelContext() - Method in interface moa.classifiers.Classifier
-
Gets the reference to the header of the data stream.
- getModelContext() - Method in class moa.clusterers.AbstractClusterer
-
- getModelContext() - Method in interface moa.clusterers.Clusterer
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.AbstractClassifier
-
Returns a string representation of the model.
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.active.ActiveClassifier
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.bayes.NaiveBayes
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.MajorityClass
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.NoChange
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.Perceptron
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SGD
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SGDMultiClass
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SPegasos
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNN
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNNwithPAW
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.ADACC
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.DACC
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.LeveragingBag
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.LimAttClassifier
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OCBoost
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBag
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBagAdwin
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBagASHT
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBoost
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.RandomRules
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.WEKAClassifier
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.MajorityLabelset
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.AbstractAMRules
-
print GUI learn model
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.AMRulesRegressor
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.Perceptron
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.TargetMean
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.DecisionStump
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree
-
- getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ORTO
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.AbstractClusterer
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.ClusterGenerator
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustream.Clustream
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustream.WithKmeans
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustree.ClusTree
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.CobWeb
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.denstream.WithDBSCAN
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.streamkm.StreamKM
-
- getModelDescription(StringBuilder, int) - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- getModelDescription(StringBuilder, int) - Method in class moa.learners.ChangeDetectorLearner
-
- getModelDescriptionNoAnomalyDetection(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
-
- getModelMeasurements() - Method in class moa.classifiers.AbstractClassifier
-
- getModelMeasurements() - Method in interface moa.classifiers.Classifier
-
Gets the current measurements of this classifier.
- getModelMeasurements() - Method in class moa.clusterers.AbstractClusterer
-
- getModelMeasurements() - Method in interface moa.clusterers.Clusterer
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.AbstractClassifier
-
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring
them to remember calls to super in overridden methods.
- getModelMeasurementsImpl() - Method in class moa.classifiers.active.ActiveClassifier
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.bayes.NaiveBayes
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.functions.MajorityClass
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.functions.NoChange
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.functions.Perceptron
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SGD
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SGDMultiClass
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SPegasos
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.lazy.kNN
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Adds ensemble weights to the measurements.
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Adds ensemble weights to the measurements.
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.ADACC
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.DACC
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.LeveragingBag
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.LimAttClassifier
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OCBoost
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Adds ensemble weights to the measurements.
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBag
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBagAdwin
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBoost
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.RandomRules
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.meta.WEKAClassifier
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.multilabel.MajorityLabelset
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.rules.AbstractAMRules
-
print GUI evaluate model
- getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.Perceptron
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.TargetMean
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.rules.RuleClassifier
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.trees.DecisionStump
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.trees.FIMTDD
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.trees.HoeffdingTree
-
- getModelMeasurementsImpl() - Method in class moa.classifiers.trees.ORTO
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.AbstractClusterer
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.ClusterGenerator
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.clustream.Clustream
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.clustream.WithKmeans
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.clustree.ClusTree
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.CobWeb
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.streamkm.StreamKM
-
- getModelMeasurementsImpl() - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- getModelMeasurementsImpl() - Method in class moa.learners.ChangeDetectorLearner
-
- getModelQuality() - Method in class moa.evaluation.CMM_GTAnalysis
-
Calculates the relative number of errors being caused by the underlying cluster model
- getN() - Method in class moa.cluster.CFCluster
-
- getName() - Method in class moa.clusterers.clustream.Clustream
-
- getName() - Method in class moa.clusterers.clustream.WithKmeans
-
- getName(int) - Static method in class moa.clusterers.macro.ColorArray
-
- getName() - Method in class moa.clusterers.macro.ColorObject
-
- getName() - Method in class moa.core.Measurement
-
- getName(int) - Method in class moa.evaluation.MeasureCollection
-
- getName() - Method in class moa.options.AbstractOption
-
- getName() - Method in interface moa.options.Option
-
Gets the name of this option
- getNames() - Method in class moa.evaluation.Accuracy
-
- getNames() - Method in class moa.evaluation.ChangeDetectionMeasures
-
- getNames() - Method in class moa.evaluation.CMM
-
- getNames() - Method in class moa.evaluation.EntropyCollection
-
- getNames() - Method in class moa.evaluation.F1
-
- getNames() - Method in class moa.evaluation.General
-
- getNames() - Method in class moa.evaluation.MeasureCollection
-
- getNames() - Method in class moa.evaluation.OutlierPerformance
-
- getNames() - Method in class moa.evaluation.RegressionAccuracy
-
- getNames() - Method in class moa.evaluation.SilhouetteCoefficient
-
- getNames() - Method in class moa.evaluation.SSQ
-
- getNames() - Method in class moa.evaluation.StatisticalCollection
-
- getNanoCPUTimeOfCurrentThread() - Static method in class moa.core.TimingUtils
-
- getNanoCPUTimeOfThread(long) - Static method in class moa.core.TimingUtils
-
- getNbActiveClassifiers() - Method in class moa.classifiers.meta.ADACC
-
- getNbActiveClassifiers() - Method in class moa.classifiers.meta.DACC
-
Returns the number of classifiers used for prediction
which includes the adaptive learners and the snapshots in ADACC
- getNbAdaptiveClassifiers() - Method in class moa.classifiers.meta.ADACC
-
- getNbAdaptiveClassifiers() - Method in class moa.classifiers.meta.DACC
-
Returns the number of adaptive classifiers in the ensemble
which excludes the static snapshots in ADACC
- getNearest(DATA, double, int) - Method in class moa.clusterers.outliers.utils.mtree.MTree
-
Performs a nearest-neighbor query on the M-Tree, constrained by distance
and/or the number of neighbors.
- getNearest(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
-
Performs a nearest-neighbor query on the M-Tree, without constraints.
- getNearestByLimit(DATA, int) - Method in class moa.clusterers.outliers.utils.mtree.MTree
-
Performs a nearest-neighbors query on the M-Tree, constrained by the
number of neighbors.
- getNearestByRange(DATA, double) - Method in class moa.clusterers.outliers.utils.mtree.MTree
-
Performs a nearest-neighbors query on the M-Tree, constrained by distance.
- getNewMeasureCollection() - Method in class moa.gui.TaskTextViewerPanel
-
- getNext() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
-
- getNode() - Method in class moa.clusterers.clustree.Entry
-
- getNodeList() - Method in class moa.classifiers.rules.core.Rule
-
- GetNodesCount() - Method in class moa.clusterers.outliers.MCOD.MicroCluster
-
- getNodeSplitter() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the splitting method currently in use to split the nodes of the
KDTree.
- getNodeStatistics() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getNoiseLabel() - Method in class moa.gui.visualization.DataPoint
-
- getNoiseSeparability() - Method in class moa.evaluation.CMM_GTAnalysis
-
Calculates how well noise is separable from the given clusters
Small values indicate bad separability, values close to 1 indicate good separability
- getNominalValueString(int, int) - Method in class moa.classifiers.AbstractClassifier
-
Gets the name of a value of an attribute from the header.
- getNominalValueString(int, int) - Method in class moa.clusterers.AbstractClusterer
-
- getNominalValueString(InstancesHeader, int, int) - Static method in class moa.core.InstancesHeader
-
- getNormalizedError(Instance) - Method in class moa.classifiers.trees.FIMTDD
-
- getNormalizedPrediction(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getNormalizeNodeWidth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Gets the normalize flag.
- getNrOfClasses() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Counts the number of classes that are present in the data set.
- getNrOfDimensions() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
Returns the number of features (label attribute excluded).
- getNrOfDimensions() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Return the dimension of the objects in the DataSet
.
- getNullString() - Method in class moa.options.AbstractClassOption
-
Gets the null string of this option.
- getNumberAttributes() - Method in class moa.classifiers.functions.Perceptron
-
- getNumberChanges() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getNumberChangesOccurred() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getNumberClasses() - Method in class moa.classifiers.functions.Perceptron
-
- getNumberDetections() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getNumberDetections() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getNumberOfGT0Classes() - Method in class moa.evaluation.CMM_GTAnalysis
-
Number of classes/clusters of the new clustering
- getNumberOfValues(int) - Method in class moa.evaluation.MeasureCollection
-
- getNumberVotes() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
-
- getNumberVotes() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
-
The number of votes added so far.
- getNumberWarnings() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getNumBytesWritten() - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
-
- getNumClasses() - Method in class moa.evaluation.MembershipMatrix
-
- getNumClassLabels() - Method in class moa.core.MultilabelInstancesHeader
-
- getNumColors() - Static method in class moa.clusterers.macro.ColorArray
-
- getNumericValueString(InstancesHeader, int, double) - Static method in class moa.core.InstancesHeader
-
- getNumFeatures() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- getNumItems() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getNumItems() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getNumLabels() - Method in class moa.core.MultilabelInstance
-
- getNumLeft() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
-
- getNumMeasures() - Method in class moa.evaluation.MeasureCollection
-
- getNumRatings() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getNumRatings() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getNumRootSplits() - Method in class moa.clusterers.clustree.ClusTree
-
Return the number of time the tree has grown in size.
- getNumSubtrees() - Method in class moa.classifiers.trees.ORTO.Node
-
- getNumSubtrees() - Method in class moa.classifiers.trees.ORTO.OptionNode
-
- getNumSubtrees() - Method in class moa.classifiers.trees.ORTO.SplitNode
-
- getNumUsers() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getNumUsers() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getObject(int) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Returns the DataObject
at the given position.
- getObject(String, String) - Static method in class moa.gui.GUIDefaults
-
Tries to instantiate the class stored for this property, optional
options will be set as well.
- getObject(String, String, Class) - Static method in class moa.gui.GUIDefaults
-
Tries to instantiate the class stored for this property, optional
options will be set as well.
- getObjectInfo(Object) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- getObjectInfo(Object) - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
-
- getObjectInfo(Object) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
-
- getObjectInfo(Object) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- getObjectInfo(Object) - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- getObjectInfo(Object) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getObjectInfo(Object) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- getObjectInfo() - Method in class moa.gui.visualization.PointPanel
-
- getObjectNamed(String) - Method in interface moa.core.ObjectRepository
-
- getObservedClassDistribution() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- getObservedClassDistribution() - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- getOption(String) - Method in class moa.options.Options
-
- getOption(char) - Method in class moa.options.Options
-
- getOptionArray() - Method in class moa.options.Options
-
- getOptionLabels() - Method in class moa.options.MultiChoiceOption
-
- getOptions() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Gets the current settings of the object.
- getOptions() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- getOptions() - Method in class moa.options.AbstractOptionHandler
-
- getOptions() - Method in interface moa.options.OptionHandler
-
Gets the options of this object
- getOptions() - Method in class weka.classifiers.meta.MOA
-
Gets the current settings of the Classifier.
- getOptions() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Gets the current settings of the datagenerator.
- getOrderingMeasurementName() - Method in class moa.evaluation.LearningCurve
-
- getOutlierer0() - Method in class moa.gui.outliertab.OutlierSetupTab
-
- getOutlierer1() - Method in class moa.gui.outliertab.OutlierSetupTab
-
- getOutlierScore(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- GetOutliersFound() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getOutliersResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getOutliersVisibility() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getOutput() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Gets the output state of the change detection.
- getOutput() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Gets the output state of the change detection.
- getOwner() - Method in class moa.classifiers.rules.core.Rule.Builder
-
- getParameterString() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- getParameterString() - Method in class moa.evaluation.CMM
-
- getParameterString() - Method in class moa.evaluation.CMM_GTAnalysis
-
String with main CMM parameters
- getParameterString() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- getParent() - Method in class moa.classifiers.trees.FIMTDD.Node
-
Return the parent node
- getParent() - Method in class moa.classifiers.trees.ORTO.Node
-
Return the parent node
- getParentEntry() - Method in class moa.clusterers.clustree.Entry
-
- getPauseInterval() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- getPauseInterval() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getPerceptron() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getPerformanceMeasurements() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in interface moa.evaluation.ClassificationPerformanceEvaluator
-
Gets the current measurements monitored by this evaluator.
- getPerformanceMeasurements() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in interface moa.evaluation.LearningPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- getPerformanceMeasurements() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- getPHError(Instance) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- getPoint(int) - Method in class moa.evaluation.CMM_GTAnalysis
-
Get CMM internal point
- getPointColorbyClass(DataPoint, float) - Static method in class moa.gui.visualization.PointPanel
-
- getPointVisibility() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.Rule
-
- getPrediction(Instance) - Method in class moa.classifiers.rules.core.Rule
-
- getPrediction(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getPrediction(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
- getPrediction(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.Node
-
- getPrediction(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.Node
-
- getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.OptionNode
-
- getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.SplitNode
-
- getPredictionError() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getPredictionModel(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
Retrieve the class votes using the perceptron learner
- getPredictionTargetMean(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
- getPreferredSize() - Method in class moa.gui.visualization.GraphCurve
-
- getPreMaterializedObject() - Method in class moa.options.AbstractClassOption
-
Returns the current object.
- getPreparedClassOption(ClassOption) - Method in class moa.options.AbstractOptionHandler
-
Gets a prepared option of this class.
- getPreparedClassOption(ClassOptionWithNames) - Method in class moa.options.AbstractOptionHandler
-
Gets a prepared option of this class.
- getPreview(ResultPreviewListener) - Method in class moa.tasks.TaskThread
-
- getProcessFrequency() - Method in class moa.gui.visualization.GraphCanvas
-
- getProgressFraction() - Method in class moa.core.InputStreamProgressMonitor
-
- getProperties() - Static method in class moa.gui.GUIDefaults
-
returns the associated properties file.
- getPropotionBelow(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- getPurpose() - Method in class moa.options.AbstractOption
-
- getPurpose() - Method in interface moa.options.Option
-
Gets the purpose of this option
- getPurposeString() - Method in class moa.classifiers.AbstractClassifier
-
- getPurposeString() - Method in class moa.classifiers.active.ActiveClassifier
-
- getPurposeString() - Method in class moa.classifiers.bayes.NaiveBayes
-
- getPurposeString() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
-
- getPurposeString() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- getPurposeString() - Method in class moa.classifiers.functions.MajorityClass
-
- getPurposeString() - Method in class moa.classifiers.functions.NoChange
-
- getPurposeString() - Method in class moa.classifiers.functions.Perceptron
-
- getPurposeString() - Method in class moa.classifiers.functions.SGD
-
- getPurposeString() - Method in class moa.classifiers.functions.SGDMultiClass
-
- getPurposeString() - Method in class moa.classifiers.functions.SPegasos
-
- getPurposeString() - Method in class moa.classifiers.lazy.kNN
-
- getPurposeString() - Method in class moa.classifiers.lazy.kNNwithPAW
-
- getPurposeString() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
-
- getPurposeString() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- getPurposeString() - Method in class moa.classifiers.meta.ADACC
-
- getPurposeString() - Method in class moa.classifiers.meta.DACC
-
- getPurposeString() - Method in class moa.classifiers.meta.LeveragingBag
-
- getPurposeString() - Method in class moa.classifiers.meta.LimAttClassifier
-
- getPurposeString() - Method in class moa.classifiers.meta.OCBoost
-
- getPurposeString() - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- getPurposeString() - Method in class moa.classifiers.meta.OzaBag
-
- getPurposeString() - Method in class moa.classifiers.meta.OzaBagAdwin
-
- getPurposeString() - Method in class moa.classifiers.meta.OzaBagASHT
-
- getPurposeString() - Method in class moa.classifiers.meta.OzaBoost
-
- getPurposeString() - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- getPurposeString() - Method in class moa.classifiers.meta.RandomRules
-
- getPurposeString() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- getPurposeString() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- getPurposeString() - Method in class moa.classifiers.meta.WEKAClassifier
-
- getPurposeString() - Method in class moa.classifiers.rules.RuleClassifier
-
- getPurposeString() - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree
-
- getPurposeString() - Method in class moa.classifiers.trees.ASHoeffdingTree
-
- getPurposeString() - Method in class moa.classifiers.trees.DecisionStump
-
- getPurposeString() - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- getPurposeString() - Method in class moa.classifiers.trees.FIMTDD
-
- getPurposeString() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- getPurposeString() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- getPurposeString() - Method in class moa.classifiers.trees.HoeffdingTree
-
- getPurposeString() - Method in class moa.classifiers.trees.LimAttHoeffdingTree
-
- getPurposeString() - Method in class moa.classifiers.trees.ORTO
-
- getPurposeString() - Method in class moa.classifiers.trees.RandomHoeffdingTree
-
- getPurposeString() - Method in class moa.clusterers.AbstractClusterer
-
- getPurposeString() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- getPurposeString() - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- getPurposeString() - Method in class moa.options.AbstractOptionHandler
-
- getPurposeString() - Method in interface moa.options.OptionHandler
-
Gets the purpose of this object
- getPurposeString() - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- getPurposeString() - Method in class moa.recommender.dataset.impl.JesterDataset
-
- getPurposeString() - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- getPurposeString() - Method in class moa.streams.ArffFileStream
-
- getPurposeString() - Method in class moa.streams.clustering.FileStream
-
- getPurposeString() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- getPurposeString() - Method in class moa.streams.ConceptDriftRealStream
-
- getPurposeString() - Method in class moa.streams.ConceptDriftStream
-
- getPurposeString() - Method in class moa.streams.FilteredStream
-
- getPurposeString() - Method in class moa.streams.filters.AddNoiseFilter
-
- getPurposeString() - Method in class moa.streams.filters.CacheFilter
-
- getPurposeString() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
-
- getPurposeString() - Method in class moa.streams.generators.AgrawalGenerator
-
- getPurposeString() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- getPurposeString() - Method in class moa.streams.generators.HyperplaneGenerator
-
- getPurposeString() - Method in class moa.streams.generators.LEDGenerator
-
- getPurposeString() - Method in class moa.streams.generators.LEDGeneratorDrift
-
- getPurposeString() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- getPurposeString() - Method in class moa.streams.generators.multilabel.MultilabelArffFileStream
-
- getPurposeString() - Method in class moa.streams.generators.RandomRBFGenerator
-
- getPurposeString() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
-
- getPurposeString() - Method in class moa.streams.generators.RandomTreeGenerator
-
- getPurposeString() - Method in class moa.streams.generators.SEAGenerator
-
- getPurposeString() - Method in class moa.streams.generators.STAGGERGenerator
-
- getPurposeString() - Method in class moa.streams.generators.WaveformGenerator
-
- getPurposeString() - Method in class moa.streams.generators.WaveformGeneratorDrift
-
- getPurposeString() - Method in class moa.streams.MultiFilteredStream
-
- getPurposeString() - Method in class moa.tasks.CacheShuffledStream
-
- getPurposeString() - Method in class moa.tasks.EvaluateClustering
-
- getPurposeString() - Method in class moa.tasks.EvaluateConceptDrift
-
- getPurposeString() - Method in class moa.tasks.EvaluateInterleavedChunks
-
- getPurposeString() - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- getPurposeString() - Method in class moa.tasks.EvaluateModel
-
- getPurposeString() - Method in class moa.tasks.EvaluateModelRegression
-
- getPurposeString() - Method in class moa.tasks.EvaluateOnlineRecommender
-
- getPurposeString() - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
-
- getPurposeString() - Method in class moa.tasks.EvaluatePrequential
-
- getPurposeString() - Method in class moa.tasks.EvaluatePrequentialRegression
-
- getPurposeString() - Method in class moa.tasks.LearnModel
-
- getPurposeString() - Method in class moa.tasks.LearnModelRegression
-
- getPurposeString() - Method in class moa.tasks.MeasureStreamSpeed
-
- getPurposeString() - Method in class moa.tasks.Plot
-
- getPurposeString() - Method in class moa.tasks.RunStreamTasks
-
- getPurposeString() - Method in class moa.tasks.RunTasks
-
- getPurposeString() - Method in class moa.tasks.WriteStreamToARFFFile
-
- getQuantile(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- getRadius() - Method in class moa.cluster.CFCluster
-
See interface Cluster
- getRadius() - Method in class moa.cluster.SphereCluster
-
- getRadius() - Method in class moa.clusterers.clustream.ClustreamKernel
-
- getRadius() - Method in class moa.clusterers.clustree.ClusKernel
-
See interface Cluster
- getRadius() - Method in class moa.clusterers.denstream.MicroCluster
-
- getRadius(long) - Method in class moa.clusterers.denstream.MicroCluster
-
- getRadius() - Method in class moa.clusterers.macro.NonConvexCluster
-
- getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
-
- getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- getRangeOfMerit(double[]) - Method in interface moa.classifiers.core.splitcriteria.SplitCriterion
-
Computes the range of splitting merit
- getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
-
- getRangeOfMerit(double[]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
-
- getRanges() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Method to get the ranges.
- getRating(int, int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getRating(int, int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- getRatingsItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getRatingsItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- getRatingsUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getRatingsUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- getRawLevel() - Method in class moa.clusterers.clustree.Node
-
Return the level number in the node.
- getRelevanceStamp() - Method in class moa.clusterers.clustream.ClustreamKernel
-
- getRelevantLabels(Instance) - Method in class moa.core.utils.Converter
-
- getRequiredType() - Method in class moa.options.AbstractClassOption
-
Gets the class type of this option.
- getRevision() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
Returns the revision string.
- getRevision() - Method in class weka.classifiers.meta.MOA
-
Returns the revision string.
- getRevision() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Returns the revision string.
- getRightStreamPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- getRightStreamPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getRowCount() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
-
- getRowCount() - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
-
- getRowCount() - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
-
- getRowCount() - Method in class moa.gui.TaskManagerPanel.TaskTableModel
-
- getRuleMajorityClassIndex(RuleClassification) - Method in class moa.classifiers.rules.RuleClassifier
-
- getRuleNumberID() - Method in class moa.classifiers.rules.core.Rule
-
- getSaveInstanceData() - Method in class moa.clusterers.CobWeb
-
Get the value of saveInstances.
- getSecond() - Method in class moa.recommender.rc.utils.Pair
-
- getSelectedCurrenTask() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- getSelectedMeasures() - Method in class moa.gui.clustertab.ClusteringEvalPanel
-
- getSelectedMeasures() - Method in class moa.gui.outliertab.OutlierEvalPanel
-
- getSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- getSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
-
- getSelectedTasks() - Method in class moa.gui.TaskManagerPanel
-
- getShapeToPlot() - Method in class moa.gui.LineGraphViewPanel.PlotLine
-
- getSimplePrediction() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getSimplePrediction() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getSingleLineDescription(StringBuilder) - Method in class moa.core.DoubleVector
-
- getSingleLineDescription(StringBuilder, int) - Method in class moa.core.DoubleVector
-
- getSingleModeFlag() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Return if single mode is set for the given data generator
mode depends on option setting and or generator type.
- getSkipIdentical() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Gets whether if identical instances are skipped from the neighbourhood.
- GetSpeed() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getSplitDim() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
Gets the splitting dimension.
- getSplitIndex() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getSplitPointSuggestions() - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- getSplitTest() - Method in class moa.classifiers.rules.nodes.RuleSplitNode
-
- getSplitValue() - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
-
- getSplitValue() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
Gets the splitting value.
- getSplitValue() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- getSquaredError() - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
Returns the squared error, for use in determining if an alternate tree is performing better than an original
tree, or if the alternate tree should be deleted
- getSquareError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- getSquareError() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- getStackTraceString(Exception) - Static method in class moa.core.MiscUtils
-
- getStateString() - Method in class moa.options.AbstractOption
-
- getStateString() - Method in class moa.options.FlagOption
-
- getStateString() - Method in interface moa.options.Option
-
Gets the state of this option in human readable form
- getStatistics() - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- getStatistics() - Method in class moa.clusterers.outliers.Angiulli.STORMBase
-
- getStatistics() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- getStatistics() - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- getStatistics() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getStatistics() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- getStatisticsBranchSplit() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getStatisticsNewRuleActiveLearningNode() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getStatisticsOtherBranchSplit() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- getStdDev() - Method in class moa.core.GaussianEstimator
-
- getStream() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- getStream() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- getStream0() - Method in class moa.gui.clustertab.ClusteringSetupTab
-
- getStream0() - Method in class moa.gui.outliertab.OutlierSetupTab
-
- getStreamValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- getStreamValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- getStringValues() - Static method in enum moa.tasks.Plot.LegendLocation
-
Get string values for the enum values.
- getStringValues() - Static method in enum moa.tasks.Plot.LegendType
-
Get string values for the enum values.
- getStringValues() - Static method in enum moa.tasks.Plot.PlotStyle
-
Get string values for the enum values.
- getStringValues() - Static method in enum moa.tasks.Plot.Terminal
-
Get string values for the enum values.
- getSubClassifiers() - Method in class moa.classifiers.AbstractClassifier
-
- getSubClassifiers() - Method in interface moa.classifiers.Classifier
-
Gets the classifiers of this ensemble.
- getSubClassifiers() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
- getSubClassifiers() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- getSubClassifiers() - Method in class moa.classifiers.meta.DACC
-
- getSubClassifiers() - Method in class moa.classifiers.meta.LeveragingBag
-
- getSubClassifiers() - Method in class moa.classifiers.meta.LimAttClassifier
-
- getSubClassifiers() - Method in class moa.classifiers.meta.OCBoost
-
- getSubClassifiers() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
- getSubClassifiers() - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- getSubClassifiers() - Method in class moa.classifiers.meta.OzaBag
-
- getSubClassifiers() - Method in class moa.classifiers.meta.OzaBagAdwin
-
- getSubClassifiers() - Method in class moa.classifiers.meta.OzaBoost
-
- getSubClassifiers() - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- getSubClassifiers() - Method in class moa.classifiers.meta.RandomRules
-
- getSubClassifiers() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- getSubClusterers() - Method in class moa.clusterers.AbstractClusterer
-
- getSubClusterers() - Method in interface moa.clusterers.Clusterer
-
- getSuggestedCutpoints() - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- getSVGString(int) - Method in class moa.gui.visualization.ClusterPanel
-
- getSVGString(int) - Method in class moa.gui.visualization.OutlierPanel
-
- getSVGString(int) - Method in class moa.gui.visualization.PointPanel
-
- getSymbol() - Method in class moa.classifiers.rules.Predicates
-
- getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
-
- getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
-
- getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
-
- getTabs() - Static method in class moa.gui.GUIDefaults
-
returns an array with the classnames of all the additional panels to
display as tabs in the GUI.
- getTabTitle() - Method in class moa.gui.AbstractTabPanel
-
Returns the string to display as title of the tab.
- getTabTitle() - Method in class moa.gui.ClassificationTabPanel
-
- getTabTitle() - Method in class moa.gui.clustertab.ClusteringTabPanel
-
- getTabTitle() - Method in class moa.gui.ConceptDriftTabPanel
-
- getTabTitle() - Method in class moa.gui.outliertab.OutlierTabPanel
-
- getTabTitle() - Method in class moa.gui.RegressionTabPanel
-
- getTargetMean() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getTargetMeanError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- getTargetSquareError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- getTask() - Method in class moa.tasks.TaskThread
-
- getTaskName() - Method in class moa.tasks.AbstractTask
-
Gets the name of this task.
- getTaskResultType() - Method in class moa.tasks.CacheShuffledStream
-
- getTaskResultType() - Method in class moa.tasks.EvaluateClustering
-
- getTaskResultType() - Method in class moa.tasks.EvaluateConceptDrift
-
- getTaskResultType() - Method in class moa.tasks.EvaluateInterleavedChunks
-
Defines the task's result type.
- getTaskResultType() - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- getTaskResultType() - Method in class moa.tasks.EvaluateModel
-
- getTaskResultType() - Method in class moa.tasks.EvaluateModelRegression
-
- getTaskResultType() - Method in class moa.tasks.EvaluateOnlineRecommender
-
- getTaskResultType() - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
-
- getTaskResultType() - Method in class moa.tasks.EvaluatePrequential
-
- getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialRegression
-
- getTaskResultType() - Method in class moa.tasks.LearnModel
-
- getTaskResultType() - Method in class moa.tasks.LearnModelRegression
-
- getTaskResultType() - Method in class moa.tasks.MeasureStreamSpeed
-
- getTaskResultType() - Method in class moa.tasks.Plot
-
Defines the task's result type.
- getTaskResultType() - Method in class moa.tasks.RunStreamTasks
-
- getTaskResultType() - Method in class moa.tasks.RunTasks
-
- getTaskResultType() - Method in interface moa.tasks.Task
-
Gets the result type of this task.
- getTaskResultType() - Method in class moa.tasks.WriteStreamToARFFFile
-
- getTimePerObj() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getTimestamp() - Method in class moa.clusterers.clustree.Entry
-
Return the current timestamp.
- getTimestamp() - Method in class moa.clusterers.denstream.Timestamp
-
- getTimestamp() - Method in class moa.gui.visualization.DataPoint
-
- getTimestamp() - Method in class moa.streams.clustering.ClusterEvent
-
- getToolTipText() - Method in class moa.gui.visualization.PointPanel
-
- getTotal() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getTotal() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
-
- getTotalCount() - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- getTotalDelay() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getTotalEntries() - Method in class moa.evaluation.MembershipMatrix
-
- getTotalWeightObserved() - Method in class moa.core.GaussianEstimator
-
- getTotalWeightObserved() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- getTotalWeightObserved() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
-
- getTotalWeightObserved() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- getTotalWeightObserved() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- getTotalWeightObserved() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- getTotalWeightObserved() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- getTotalWeightObserved() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- getTotalWeightObserved() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- getType() - Method in class moa.streams.clustering.ClusterEvent
-
- getUpperQuartile(int) - Method in class moa.evaluation.MeasureCollection
-
- getUserFeatures(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- getUsers() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- getUsers() - Method in interface moa.recommender.rc.data.RecommenderData
-
- getValue() - Method in class moa.classifiers.meta.DACC.Pair
-
- getValue() - Method in class moa.classifiers.rules.Predicates
-
- getValue(int) - Method in class moa.core.DoubleVector
-
- getValue() - Method in class moa.core.Measurement
-
- getValue(int, int) - Method in class moa.evaluation.MeasureCollection
-
- getValue() - Method in class moa.options.FloatOption
-
- getValue() - Method in class moa.options.IntOption
-
- getValue() - Method in class moa.options.StringOption
-
- getValueAsCLIString() - Method in class moa.options.AbstractClassOption
-
- getValueAsCLIString() - Method in class moa.options.ClassOption
-
- getValueAsCLIString() - Method in class moa.options.ClassOptionWithNames
-
- getValueAsCLIString() - Method in class moa.options.FlagOption
-
- getValueAsCLIString() - Method in class moa.options.FloatOption
-
- getValueAsCLIString() - Method in class moa.options.IntOption
-
- getValueAsCLIString() - Method in class moa.options.ListOption
-
- getValueAsCLIString() - Method in class moa.options.MultiChoiceOption
-
- getValueAsCLIString() - Method in interface moa.options.Option
-
Gets the value of a Command Line Interface text as a string
- getValueAsCLIString() - Method in class moa.options.StringOption
-
- getValueAsCLIString() - Method in class moa.options.WEKAClassOption
-
- getValueAt(int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
-
- getValueAt(int, int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
-
- getValueAt(int, int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
-
- getValueAt(int, int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
-
- getVariance() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getVariance() - Method in class moa.core.GaussianEstimator
-
- getVariances() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Calculates the variance of this data set for each dimension
- getVarianceVector() - Method in class moa.clusterers.clustree.ClusKernel
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.active.ActiveClassifier
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.bayes.NaiveBayes
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
-
Calculates the class membership probabilities for the given test
instance.
- getVotesForInstance(Instance) - Method in interface moa.classifiers.Classifier
-
Predicts the class memberships for a given instance.
- getVotesForInstance(Instance) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.functions.MajorityClass
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.functions.NoChange
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.functions.Perceptron
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SGD
-
Calculates the class membership probabilities for the given test
instance.
- getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SGDMultiClass
-
Calculates the class membership probabilities for the given test
instance.
- getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SPegasos
-
Calculates the class membership probabilities for the given test
instance.
- getVotesForInstance(Instance) - Method in class moa.classifiers.lazy.kNN
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Predicts a class for an example.
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Predicts a class for an example.
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.DACC
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.LeveragingBag
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.LimAttClassifier
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OCBoost
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Predicts a class for an example.
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBag
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBagAdwin
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBagASHT
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBoost
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.RandomRules
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.meta.WEKAClassifier
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.MajorityLabelset
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.meta.MLOzaBag
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.meta.MLOzaBagAdwin
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
-
getVotesForInstance extension of the instance method getVotesForInstance
in moa.classifier.java
returns the prediction of the instance.
- getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.FadingTargetMean
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.TargetMean
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.rules.RuleClassifier
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.trees.DecisionStump
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.trees.FIMTDD
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingTree
-
- getVotesForInstance(Instance) - Method in class moa.classifiers.trees.ORTO
-
- getVotesForInstance(Instance) - Method in interface moa.clusterers.Clusterer
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.ClusterGenerator
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.clustream.Clustream
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.clustream.WithKmeans
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.clustree.ClusTree
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.CobWeb
-
Classifies a given instance.
- getVotesForInstance(Instance) - Method in class moa.clusterers.denstream.WithDBSCAN
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.streamkm.StreamKM
-
- getVotesForInstance(Instance) - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- getVotesForInstance(Instance) - Method in class moa.learners.ChangeDetectorLearner
-
- getVotesForInstanceBinary(Instance) - Method in class moa.classifiers.meta.LeveragingBag
-
- getVotesForInstanceBinary(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- getVotesForInstancePerceptron(double[][], int[], int) - Method in class moa.classifiers.meta.LimAttClassifier
-
- getWaitWinFull() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- getWarning() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getWarningZone() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Gets whether the change detector is in the warning zone, after a warning
alert and before a change alert.
- getWarningZone() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Gets whether the change detector is in the warning zone, after a warning alert and before a change alert.
- getWeight() - Method in class moa.cluster.CFCluster
-
See interface Cluster
- getWeight() - Method in class moa.cluster.Cluster
-
Returns the weight of this cluster, not neccessarily normalized.
- getWeight() - Method in class moa.cluster.SphereCluster
-
- getWeight() - Method in class moa.clusterers.clustree.ClusKernel
-
- getWeight() - Method in class moa.clusterers.denstream.MicroCluster
-
- getWeightedError() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
-
- getWeightedError() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
-
Returns the weighted error.
- getWeights() - Method in class moa.classifiers.functions.Perceptron
-
- getWeights() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
-
- getWeights() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
-
Return the weights error.
- getWeights() - Method in class moa.classifiers.rules.functions.Perceptron
-
- getWeights() - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- getWeights() - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
- getWeightSeen() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- getWeightSeen() - Method in class moa.classifiers.rules.RuleClassifier
-
- getWeightSeen() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
-
- getWeightSeen() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- getWeightSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
-
- getWeightSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- getWidth() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getWidthT() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- getWorkbenchInfoString() - Static method in class moa.core.Globals
-
- getWorstError() - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- getWVDIndexes() - Method in class moa.classifiers.meta.DACC
-
Returns the classifiers that vote for the final prediction
when the WVD combination function is selected
- GiniSplitCriterion - Class in moa.classifiers.core.splitcriteria
-
Class for computing splitting criteria using Gini
with respect to distributions of class values.
- GiniSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.GiniSplitCriterion
-
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
-
Returns a string describing this object.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns a string describing this nearest neighbour search algorithm.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
-
Returns a string describing this nearest neighbour search algorithm.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
-
Returns a string describing this nearest neighbour search algorithm.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
-
Returns a string describing this nearest neighbour search algorithm.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
-
Returns a string describing this nearest neighbour search algorithm.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Returns a string describing this nearest neighbour search algorithm.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Returns a string describing this nearest neighbour search algorithm.
- globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Returns a string describing this object.
- globalInfo() - Method in class weka.classifiers.meta.MOA
-
Returns a string describing the classifier.
- globalInfo() - Method in class weka.datagenerators.classifiers.classification.MOA
-
Returns a string describing this data generator.
- Globals - Class in moa.core
-
Class for storing global information about current version of MOA.
- Globals() - Constructor for class moa.core.Globals
-
- gnuplotPathOption - Variable in class moa.tasks.Plot
-
Path to gunplot's binary directory, for example C:\Tools\Gnuplot\binary.
- gracePeriodOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- gracePeriodOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- gracePeriodOption - Variable in class moa.classifiers.trees.DecisionStump
-
- gracePeriodOption - Variable in class moa.classifiers.trees.FIMTDD
-
- gracePeriodOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- gracePeriodOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- gracePeriodOption - Variable in class moa.classifiers.trees.ORTO
-
- GradualChangeGenerator - Class in moa.streams.generators.cd
-
- GradualChangeGenerator() - Constructor for class moa.streams.generators.cd.GradualChangeGenerator
-
- graph() - Method in class moa.clusterers.CobWeb
-
Generates the graph string of the Cobweb tree
- GraphAxes - Class in moa.gui.visualization
-
- GraphAxes() - Constructor for class moa.gui.visualization.GraphAxes
-
Creates new form GraphAxes
- GraphCanvas - Class in moa.gui.visualization
-
- GraphCanvas() - Constructor for class moa.gui.visualization.GraphCanvas
-
Creates new form GraphCanvas
- GraphCurve - Class in moa.gui.visualization
-
- GraphCurve() - Constructor for class moa.gui.visualization.GraphCurve
-
Creates new form GraphCurve
- greaterThan - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
-
- GreenwaldKhannaNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
-
Class for observing the class data distribution for a numeric attribute using Greenwald and Khanna methodology.
- GreenwaldKhannaNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- GreenwaldKhannaQuantileSummary - Class in moa.core
-
Class for representing summaries of Greenwald and Khanna quantiles.
- GreenwaldKhannaQuantileSummary(int) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary
-
- GreenwaldKhannaQuantileSummary.Tuple - Class in moa.core
-
- GreenwaldKhannaQuantileSummary.Tuple(double, long, long) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary.Tuple
-
- GreenwaldKhannaQuantileSummary.Tuple(double) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary.Tuple
-
- gridBagConstraints - Variable in class moa.gui.TaskTextViewerPanel
-
- growthAllowed - Variable in class moa.classifiers.trees.HoeffdingTree
-
- GUI - Class in moa.gui
-
The main class for the MOA gui.
- GUI() - Constructor for class moa.gui.GUI
-
- GUIDefaults - Class in moa.gui
-
This class offers get methods for the default GUI settings in
the props file moa/gui/GUI.props
.
- GUIDefaults() - Constructor for class moa.gui.GUIDefaults
-
- GUIUtils - Class in moa.gui
-
This class offers util methods for displaying dialogs showing errors or exceptions.
- GUIUtils() - Constructor for class moa.gui.GUIUtils
-
- id - Variable in class moa.classifiers.rules.core.Rule.Builder
-
- id(int) - Method in class moa.classifiers.rules.core.Rule.Builder
-
- ID - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- ID - Variable in class moa.classifiers.trees.ORTO.Node
-
- id - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
-
- id - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
-
- id - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- id - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
-
- id - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- IDenseMacroCluster - Interface in moa.clusterers.macro
-
- illegalNameCharacters - Static variable in class moa.options.AbstractOption
-
Array of characters not valid to use in option names.
- IMacroClusterer - Interface in moa.clusterers.macro
-
- iMaxMemUsage - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- implementsMicroClusterer() - Method in class moa.clusterers.AbstractClusterer
-
- implementsMicroClusterer() - Method in interface moa.clusterers.Clusterer
-
- implementsMicroClusterer() - Method in class moa.clusterers.ClusterGenerator
-
- implementsMicroClusterer() - Method in class moa.clusterers.clustream.Clustream
-
- implementsMicroClusterer() - Method in class moa.clusterers.clustream.WithKmeans
-
Miscellaneous
- implementsMicroClusterer() - Method in class moa.clusterers.clustree.ClusTree
-
- implementsMicroClusterer() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- implementsMicroClusterer() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- improveObjectOnce(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingTree
-
- inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.ORTO
-
- inactiveLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- inactiveLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
-
- incrCutPoint - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- increase() - Method in class moa.clusterers.denstream.Timestamp
-
- incrementValueOption - Variable in class moa.tasks.RunStreamTasks
-
- incrementValueOption - Variable in class moa.tasks.RunTasks
-
- independentBoundedConditionSum - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test.SampleInfo
-
- index - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
-
the index of this element.
- index - Variable in class moa.classifiers.meta.ADACC
-
Current stability index
- indexCache - Variable in class moa.streams.filters.CacheFilter
-
- InfoGainSplitCriterion - Class in moa.classifiers.core.splitcriteria
-
Class for computing splitting criteria using information gain
with respect to distributions of class values.
- InfoGainSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- InfoGainSplitCriterionMultilabel - Class in moa.classifiers.core.splitcriteria
-
Class for computing splitting criteria using information gain with respect to
distributions of class values for Multilabel data.
- InfoGainSplitCriterionMultilabel() - Constructor for class moa.classifiers.core.splitcriteria.InfoGainSplitCriterionMultilabel
-
- InfoPanel - Class in moa.gui.visualization
-
- InfoPanel(JFrame) - Constructor for class moa.gui.visualization.InfoPanel
-
Creates new form InfoPanel
- Init() - Method in class moa.clusterers.outliers.AbstractC.AbstractC
-
- Init() - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
-
- Init() - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
-
- Init() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- Init() - Method in class moa.clusterers.outliers.MCOD.MCOD
-
- Init() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- Init() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
-
- init() - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- init() - Method in class moa.recommender.dataset.impl.JesterDataset
-
- init() - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- init() - Method in class moa.streams.filters.CacheFilter
-
- initClassifiers - Variable in class moa.classifiers.meta.LimAttClassifier
-
- initHeader(Instances) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- initialDBScan() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- initialisePerceptron - Variable in class moa.classifiers.rules.functions.Perceptron
-
- initialize() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
initializes the ranges and the attributes being used.
- initialize(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- initialize(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- initializeAlternateTree(FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- initializeAttributeIndices() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
initializes the attribute indices.
- initialized - Variable in class moa.clusterers.streamkm.StreamKM
-
- initializeEntry(Entry, long) - Method in class moa.clusterers.clustree.Entry
-
When this entry is empty, give it it's first values.
- initializeRanges() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Initializes the ranges using all instances of the dataset.
- initializeRanges(int[]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Initializes the ranges of a subset of the instances of this dataset.
- initializeRanges(int[], int, int) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Initializes the ranges of a subset of the instances of this dataset.
- initializeRangesEmpty(int, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Used to initialize the ranges.
- initializeRuleStatistics(RuleClassification, Predicates, Instance) - Method in class moa.classifiers.rules.RuleClassifier
-
- initialNumInstancesOption - Variable in class moa.classifiers.meta.LimAttClassifier
-
- initialPauseInterval - Static variable in class moa.gui.visualization.RunOutlierVisualizer
-
the pause interval, being read from the gui at startup
- initialPauseInterval - Static variable in class moa.gui.visualization.RunVisualizer
-
the pause interval, being read from the gui at startup
- initKernels() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- initKm1 - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- initLearnRate - Variable in class moa.classifiers.trees.ORTO
-
- initMatrixCodes - Variable in class moa.classifiers.meta.LeveragingBag
-
- initMatrixCodes - Variable in class moa.classifiers.meta.LimAttClassifier
-
- initMatrixCodes - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- InitNode() - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- initObject(int, double[]) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- initPointsOption - Variable in class moa.clusterers.denstream.WithDBSCAN
-
- initVariables() - Method in class moa.classifiers.meta.ADACC
-
- initVariables() - Method in class moa.classifiers.meta.DACC
-
Initializes the method variables
- initVisualEvalPanel() - Method in class moa.gui.TaskTextViewerPanel
-
- INMEM_PREFIX_STRING - Static variable in class moa.options.AbstractClassOption
-
The prefix text to use to indicate inmem.
- input(double) - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Adding a numeric value to the change detector
The output of the change detector is modified after the insertion of a
new item inside.
- input(double) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
-
- input(double) - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Adding a numeric value to the change detector
The output of the change detector is modified after the insertion of a
new item inside.
- input(double) - Method in class moa.classifiers.core.driftdetection.CusumDM
-
- input(double) - Method in class moa.classifiers.core.driftdetection.DDM
-
- input(double) - Method in class moa.classifiers.core.driftdetection.EDDM
-
- input(double) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- input(double) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
-
- input(double) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
-
- input(double) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- input(boolean) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- input(double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- input(double) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- input(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- input(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
-
- inputByteSize - Variable in class moa.core.InputStreamProgressMonitor
-
The number of bytes to read in total
- inputBytesRead - Variable in class moa.core.InputStreamProgressMonitor
-
The number of bytes read so far
- inputFilesOption - Variable in class moa.tasks.Plot
-
Comma separated list of input *csv files.
- inputInstance - Variable in class moa.streams.ConceptDriftRealStream
-
- inputStream - Variable in class moa.streams.ConceptDriftRealStream
-
- inputStream - Variable in class moa.streams.ConceptDriftStream
-
- inputStream - Variable in class moa.streams.filters.AbstractStreamFilter
-
The input stream to this filter.
- InputStreamProgressMonitor - Class in moa.core
-
Class for monitoring the progress of reading an input stream.
- InputStreamProgressMonitor(InputStream) - Constructor for class moa.core.InputStreamProgressMonitor
-
- inputValues - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- inRanges(Instance, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Test if an instance is within the given ranges.
- insert(Instance, long) - Method in class moa.clusterers.clustream.ClustreamKernel
-
- insert(ClusKernel, Budget, long) - Method in class moa.clusterers.clustree.ClusTree
-
Insert a new point in the Tree
.
- insert(Instance, long) - Method in class moa.clusterers.denstream.MicroCluster
-
- insert(CFCluster) - Method in class moa.clusterers.macro.NonConvexCluster
-
- Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
-
- Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
-
- Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
-
- Insert(ISBIndex.ISBNode, Long) - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
-
- Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
-
- Insert(ISBIndex.ISBNode, Long) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
-
- insert(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- insertEntry(LearningEvaluation) - Method in class moa.evaluation.LearningCurve
-
- insertSorted(double, Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
Inserts an instance neighbor into the list, maintaining the list
sorted by distance.
- insertTuple(GreenwaldKhannaQuantileSummary.Tuple, int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
-
- insertValue(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
-
- insertValue(double, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
-
- insertValue(double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
-
Insert a new value into the tree, updating both the sum of values and
sum of squared values arrays
- insertValue(double, double, double) - Method in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
-
Insert a new value into the tree, updating both the sum of values and
sum of squared values arrays
- inst - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
-
- inst - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
-
- inst - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- inst - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
-
- inst - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- instance - Variable in class moa.classifiers.rules.RuleClassifier
-
- instanceChildIndex(Instance) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- instanceChildIndex(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- instanceChildIndex(Instance) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- instanceChildIndex(Instance) - Method in class moa.classifiers.trees.ORTO.SplitNode
-
- InstanceConditionalBinaryTest - Class in moa.classifiers.core.conditionaltests
-
Abstract binary conditional test for instances to use to split nodes in Hoeffding trees.
- InstanceConditionalBinaryTest() - Constructor for class moa.classifiers.core.conditionaltests.InstanceConditionalBinaryTest
-
- InstanceConditionalTest - Class in moa.classifiers.core.conditionaltests
-
Abstract conditional test for instances to use to split nodes in Hoeffding trees.
- InstanceConditionalTest() - Constructor for class moa.classifiers.core.conditionaltests.InstanceConditionalTest
-
- instanceLimitOption - Variable in class moa.tasks.EvaluateClustering
-
- instanceLimitOption - Variable in class moa.tasks.EvaluateConceptDrift
-
- instanceLimitOption - Variable in class moa.tasks.EvaluateInterleavedChunks
-
Allows to define the maximum number of instances to test/train on (-1 = no limit).
- instanceLimitOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- instanceLimitOption - Variable in class moa.tasks.EvaluatePrequential
-
- instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialRegression
-
- instanceRandom - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- instanceRandom - Variable in class moa.streams.generators.AgrawalGenerator
-
- instanceRandom - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- instanceRandom - Variable in class moa.streams.generators.HyperplaneGenerator
-
- instanceRandom - Variable in class moa.streams.generators.LEDGenerator
-
- instanceRandom - Variable in class moa.streams.generators.RandomRBFGenerator
-
- instanceRandom - Variable in class moa.streams.generators.RandomTreeGenerator
-
- instanceRandom - Variable in class moa.streams.generators.SEAGenerator
-
- instanceRandom - Variable in class moa.streams.generators.STAGGERGenerator
-
- instanceRandom - Variable in class moa.streams.generators.WaveformGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.AgrawalGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.HyperplaneGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.LEDGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.RandomRBFGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.RandomTreeGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.SEAGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.STAGGERGenerator
-
- instanceRandomSeedOption - Variable in class moa.streams.generators.WaveformGenerator
-
- instances - Variable in class moa.streams.ArffFileStream
-
- instances - Variable in class moa.streams.clustering.FileStream
-
- INSTANCES_BETWEEN_MONITOR_UPDATES - Static variable in class moa.tasks.MainTask
-
The number of instances between monitor updates.
- instancesBuffer - Variable in class moa.classifiers.meta.WEKAClassifier
-
- InstancesHeader - Class in moa.core
-
Class for storing the header or context of a data stream.
- InstancesHeader(Instances) - Constructor for class moa.core.InstancesHeader
-
- instancesSeen - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyFading
-
- instancesSeen - Variable in class moa.classifiers.rules.RuleClassification
-
- instancesSeen - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- instancesSeen - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
- instancesSeenTest - Variable in class moa.classifiers.rules.RuleClassification
-
- InstanceStream - Interface in moa.streams
-
Interface representing a data stream of instances.
- INT_ADD - Static variable in class moa.clusterers.clustree.util.SimpleBudget
-
- INT_DIV - Static variable in class moa.clusterers.clustree.util.SimpleBudget
-
- INT_MULT - Static variable in class moa.clusterers.clustree.util.SimpleBudget
-
- integerAddition() - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
class that an integer addition has been
performed by the tree.
- integerAddition(int) - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
that a certain number of integer additions
have been done.
- integerAddition() - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- integerAddition(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- integerDivision() - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
class that a integer division has
been performed by the tree.
- integerDivision(int) - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
that a certain number of integer divisions
have been performed.
- integerDivision() - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- integerDivision(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- integerMultiplication() - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
class that a integer multiplicaton has
been performed by the tree.
- integerMultiplication(int) - Method in interface moa.clusterers.clustree.util.Budget
-
Inform the Budget
that a certain number of integer
multiplications have been performed.
- integerMultiplication() - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- integerMultiplication(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
-
- IntOption - Class in moa.options
-
Int option.
- IntOption(String, char, String, int) - Constructor for class moa.options.IntOption
-
- IntOption(String, char, String, int, int, int) - Constructor for class moa.options.IntOption
-
- IntOptionEditComponent - Class in moa.gui
-
An OptionEditComponent that lets the user edit an integer option.
- IntOptionEditComponent(IntOption) - Constructor for class moa.gui.IntOptionEditComponent
-
- intToCLIString(int) - Static method in class moa.options.IntOption
-
- invalidate() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
invalidates all initializations.
- inverseError(double) - Static method in class moa.clusterers.clustream.ClustreamKernel
-
Approximates the inverse error function.
- InverseErrorWeightedVote - Class in moa.classifiers.rules.core.voting
-
InverseErrorWeightedVote class for weighted votes based on estimates of errors.
- InverseErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
-
- invertSelectionTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Returns the tip text for this property.
- isALeaf() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
Checks if node is a leaf.
- isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.Rule
-
- isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- ISB - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- ISB - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- ISB - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- ISB_PD - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- ISBIndex - Class in moa.clusterers.outliers.AbstractC
-
- ISBIndex(double, double) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex
-
- ISBIndex - Class in moa.clusterers.outliers.Angiulli
-
- ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex
-
- ISBIndex - Class in moa.clusterers.outliers.MCOD
-
- ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex
-
- ISBIndex - Class in moa.clusterers.outliers.SimpleCOD
-
- ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex
-
- ISBIndex.ISBNode - Class in moa.clusterers.outliers.AbstractC
-
- ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
-
- ISBIndex.ISBNode - Class in moa.clusterers.outliers.Angiulli
-
- ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
-
- ISBIndex.ISBNode - Class in moa.clusterers.outliers.MCOD
-
- ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- ISBIndex.ISBNode - Class in moa.clusterers.outliers.SimpleCOD
-
- ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- ISBIndex.ISBNode.NodeType - Enum in moa.clusterers.outliers.MCOD
-
- ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.AbstractC
-
- ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
-
- ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.Angiulli
-
- ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
-
- ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.MCOD
-
- ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
-
- ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.SimpleCOD
-
- ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
-
- isBufferStoring - Variable in class moa.classifiers.meta.WEKAClassifier
-
- isCancelled() - Method in class moa.tasks.NullMonitor
-
- isCancelled() - Method in class moa.tasks.StandardTaskMonitor
-
- isCancelled() - Method in interface moa.tasks.TaskMonitor
-
Gets whether the task monitored is cancelled.
- isCellEditable(int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
-
- isCellEditable(int, int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
-
- isCellEditable(int, int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
-
- isCellEditable(int, int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
-
- isChangeDetected - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Change was detected
- isClassificationEnabled - Variable in class moa.classifiers.meta.WEKAClassifier
-
- isClustered() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
-
- isComplete - Variable in class moa.tasks.StandardTaskMonitor
-
- isComplete() - Method in class moa.tasks.TaskThread
-
- isCovering(Instance) - Method in class moa.classifiers.rules.core.Rule
-
- isEmpty() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
Gets whether the list is empty.
- isEmpty() - Method in class moa.clusterers.clustream.ClustreamKernel
-
Check if this cluster is empty or not.
- isEmpty() - Method in class moa.clusterers.clustree.ClusKernel
-
Check if this cluster is empty or not.
- isEmpty() - Method in class moa.clusterers.clustree.Entry
-
Check if this Entry
is empty or not.
- isEnabled(int) - Method in class moa.evaluation.MeasureCollection
-
- isEnabledDrawClustering() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- isEnabledDrawGroundTruth() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- isEnabledDrawMicroclustering() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- isEnabledDrawOutliers() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- isEnabledDrawPoints() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- isEnabledDrawPoints() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- isEqual(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- isGroundTruth() - Method in class moa.cluster.Cluster
-
- isIncludedInRuleNode(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- isInitialized - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
The change detector has been initialized with the option values
- isInitialized - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- isInitialized - Variable in class moa.streams.filters.CacheFilter
-
- isIrrelevant(double) - Method in class moa.clusterers.clustree.Entry
-
Returns true if this entry is irrelevant with respecto the given
threshold.
- isJavaVersionOK() - Static method in class moa.DoTask
-
Checks if the Java version is recent enough to run MOA.
- isLeaf() - Method in class moa.classifiers.trees.FIMTDD.Node
-
- isLeaf() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- isLeaf() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- isLeaf() - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- isLeaf() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- isLeaf() - Method in class moa.classifiers.trees.ORTO.Node
-
- isLeaf() - Method in class moa.classifiers.trees.ORTO.OptionNode
-
- isLeaf() - Method in class moa.classifiers.trees.ORTO.SplitNode
-
- isLeaf() - Method in class moa.clusterers.clustree.Node
-
Checks if this node is a leaf.
- isMissingValue(double) - Static method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Tests if the given value codes "missing".
- IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.Angiulli.STORMBase
-
- IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- isNoise() - Method in class moa.gui.visualization.DataPoint
-
- isNullError() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- isNullError() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- isNullError() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
-
- isOutiler() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
- isOutlier(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- isOutputFile - Variable in class moa.options.FileOption
-
- isOutputFile() - Method in class moa.options.FileOption
-
- isPaintable() - Method in class weka.gui.MOAClassOptionEditor
-
Returns true since this editor is paintable.
- isPaused() - Method in class moa.tasks.NullMonitor
-
- isPaused() - Method in class moa.tasks.StandardTaskMonitor
-
- isPaused() - Method in interface moa.tasks.TaskMonitor
-
Gets whether the task monitored is paused.
- isPresent() - Static method in class moa.core.SizeOf
-
Checks whteher the agent is present.
- isPublicConcreteClassOfType(String, Class<?>) - Static method in class moa.core.AutoClassDiscovery
-
- isRandomizable() - Method in class moa.classifiers.active.ActiveClassifier
-
- isRandomizable() - Method in class moa.classifiers.bayes.NaiveBayes
-
- isRandomizable() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
-
- isRandomizable() - Method in interface moa.classifiers.Classifier
-
Gets whether this classifier needs a random seed.
- isRandomizable() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- isRandomizable() - Method in class moa.classifiers.functions.MajorityClass
-
- isRandomizable() - Method in class moa.classifiers.functions.NoChange
-
- isRandomizable() - Method in class moa.classifiers.functions.Perceptron
-
- isRandomizable() - Method in class moa.classifiers.functions.SGD
-
- isRandomizable() - Method in class moa.classifiers.functions.SGDMultiClass
-
- isRandomizable() - Method in class moa.classifiers.functions.SPegasos
-
- isRandomizable() - Method in class moa.classifiers.lazy.kNN
-
- isRandomizable() - Method in class moa.classifiers.lazy.kNNwithPAW
-
- isRandomizable() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
-
- isRandomizable() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Determines whether the classifier is randomizable.
- isRandomizable() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Determines whether the classifier is randomizable.
- isRandomizable() - Method in class moa.classifiers.meta.DACC
-
- isRandomizable() - Method in class moa.classifiers.meta.LeveragingBag
-
- isRandomizable() - Method in class moa.classifiers.meta.LimAttClassifier
-
- isRandomizable() - Method in class moa.classifiers.meta.OCBoost
-
- isRandomizable() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Determines whether the classifier is randomizable.
- isRandomizable() - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- isRandomizable() - Method in class moa.classifiers.meta.OzaBag
-
- isRandomizable() - Method in class moa.classifiers.meta.OzaBagAdwin
-
- isRandomizable() - Method in class moa.classifiers.meta.OzaBoost
-
- isRandomizable() - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- isRandomizable() - Method in class moa.classifiers.meta.RandomRules
-
- isRandomizable() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- isRandomizable() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- isRandomizable() - Method in class moa.classifiers.meta.WEKAClassifier
-
- isRandomizable() - Method in class moa.classifiers.multilabel.MajorityLabelset
-
- isRandomizable() - Method in class moa.classifiers.multilabel.meta.MLOzaBag
-
- isRandomizable() - Method in class moa.classifiers.rules.AbstractAMRules
-
description of the Methods used.
- isRandomizable() - Method in class moa.classifiers.rules.AMRulesRegressor
-
- isRandomizable() - Method in class moa.classifiers.rules.functions.Perceptron
-
- isRandomizable() - Method in class moa.classifiers.rules.functions.TargetMean
-
- isRandomizable() - Method in class moa.classifiers.rules.RuleClassifier
-
- isRandomizable() - Method in class moa.classifiers.trees.DecisionStump
-
- isRandomizable() - Method in class moa.classifiers.trees.FIMTDD
-
- isRandomizable() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- isRandomizable() - Method in class moa.classifiers.trees.HoeffdingTree
-
- isRandomizable() - Method in class moa.classifiers.trees.LimAttHoeffdingTree
-
- isRandomizable() - Method in class moa.classifiers.trees.ORTO
-
- isRandomizable() - Method in class moa.classifiers.trees.RandomHoeffdingTree
-
- isRandomizable() - Method in interface moa.clusterers.Clusterer
-
- isRandomizable() - Method in class moa.clusterers.ClusterGenerator
-
- isRandomizable() - Method in class moa.clusterers.clustream.Clustream
-
- isRandomizable() - Method in class moa.clusterers.clustream.WithKmeans
-
- isRandomizable() - Method in class moa.clusterers.clustree.ClusTree
-
- isRandomizable() - Method in class moa.clusterers.CobWeb
-
- isRandomizable() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- isRandomizable() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- isRandomizable() - Method in class moa.clusterers.streamkm.StreamKM
-
- isRandomizable() - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- isRandomizable() - Method in class moa.learners.ChangeDetectorLearner
-
- isRegression - Variable in class moa.classifiers.meta.RandomRules
-
- isRestartable() - Method in class moa.streams.ArffFileStream
-
- isRestartable() - Method in class moa.streams.CachedInstancesStream
-
- isRestartable() - Method in class moa.streams.clustering.FileStream
-
- isRestartable() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- isRestartable() - Method in class moa.streams.ConceptDriftRealStream
-
- isRestartable() - Method in class moa.streams.ConceptDriftStream
-
- isRestartable() - Method in class moa.streams.FilteredStream
-
- isRestartable() - Method in class moa.streams.filters.AbstractStreamFilter
-
- isRestartable() - Method in class moa.streams.generators.AgrawalGenerator
-
- isRestartable() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- isRestartable() - Method in class moa.streams.generators.HyperplaneGenerator
-
- isRestartable() - Method in class moa.streams.generators.LEDGenerator
-
- isRestartable() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- isRestartable() - Method in class moa.streams.generators.RandomRBFGenerator
-
- isRestartable() - Method in class moa.streams.generators.RandomTreeGenerator
-
- isRestartable() - Method in class moa.streams.generators.SEAGenerator
-
- isRestartable() - Method in class moa.streams.generators.STAGGERGenerator
-
- isRestartable() - Method in class moa.streams.generators.WaveformGenerator
-
- isRestartable() - Method in interface moa.streams.InstanceStream
-
Gets whether this stream can restart.
- isRestartable() - Method in class moa.streams.MultiFilteredStream
-
- isSet - Variable in class moa.options.FlagOption
-
- isSet() - Method in class moa.options.FlagOption
-
- isUsingSameAttribute(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- isValidCluster() - Method in class moa.gui.visualization.ClusterPanel
-
- isValidCluster() - Method in class moa.gui.visualization.OutlierPanel
-
- isVisited() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
-
- isWarningZone - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Warning Zone: after a warning and before a change
- isWarningZone - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- isWekaVersionOK() - Static method in class moa.DoTask
-
Checks if the Weka version is recent enough to run MOA.
- itemExists(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- itemExists(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- itemFeature - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- itemID - Variable in class moa.recommender.rc.utils.Rating
-
- itemsStats - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- iterationControl - Variable in class moa.classifiers.active.ActiveClassifier
-
- iterationsOption - Variable in class moa.recommender.predictor.BRISMFPredictor
-
- iterator() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
An iterator for the set.
- iterator() - Method in class moa.clusterers.outliers.utils.mtree.MTree.Query
-
- iterator() - Method in class moa.recommender.rc.utils.DenseVector
-
- iterator() - Method in class moa.recommender.rc.utils.SparseVector
-
- iterator() - Method in class moa.recommender.rc.utils.Vector
-
- m_A - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- m_ActiveIndices - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
The boolean flags, whether an attribute will be used or not.
- m_ActualClassifier - Variable in class weka.classifiers.meta.MOA
-
the actual moa classifier to use for learning.
- m_ActualGenerator - Variable in class weka.datagenerators.classifiers.classification.MOA
-
the actual data generator.
- m_acuity - Variable in class moa.clusterers.CobWeb
-
Acuity (minimum standard deviation).
- m_bias - Variable in class moa.classifiers.functions.SGD
-
- m_bias - Variable in class moa.classifiers.functions.SGDMultiClass
-
- m_BinaryGenerator - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- m_Classifier - Variable in class weka.classifiers.meta.MOA
-
the moa classifier option (this object is used in the GenericObjectEditor).
- m_classTotals - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
-
sum of weight_of_instance * word_count_of_instance for each class
- m_cobwebTree - Variable in class moa.clusterers.CobWeb
-
Holds the root of the Cobweb tree.
- m_CustomEditor - Variable in class weka.gui.MOAClassOptionEditor
-
the custom editor.
- m_cutoff - Variable in class moa.clusterers.CobWeb
-
Cutoff (minimum category utility).
- m_Data - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
the instances used internally.
- m_Distance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
-
The distance from the current instance to this neighbor.
- m_DistanceFunction - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
the distance function used.
- m_DistanceList - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
Array holding the distances of the nearest neighbours.
- m_Distances - Variable in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Array holding the distances of the nearest neighbours.
- m_DontNormalize - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
True if normalization is turned off (default false).
- m_EditComponent - Variable in class weka.gui.MOAClassOptionEditor
-
the component for editing.
- m_End - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
The end index of the portion of the master index array,
which stores indices of the instances/points the node
contains.
- m_EuclideanDistance - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
The euclidean distance function to use.
- m_EuclideanDistance - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
The distance function used for building the tree.
- m_First - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
The first node in the list.
- m_Fraction - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- m_Generator - Variable in class weka.datagenerators.classifiers.classification.MOA
-
for manipulating the generator through the GUI.
- m_headerInfo - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
-
copy of header information for use in toString method
- m_Instance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
-
The neighbor instance.
- m_Instances - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
The instances that'll be used for tree construction.
- m_Instances - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
The neighbourhood of instances to find neighbours in.
- m_InstancesTemplate - Variable in class moa.core.utils.Converter
-
- m_InstList - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
Indexlist of the instances of this kdtree.
- m_InstList - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
The master index array that'll be reshuffled as nodes
are split and the tree is constructed.
- m_k - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- m_k - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- m_k - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- m_kNN - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
The number of neighbours to find.
- m_L - Variable in class moa.classifiers.multilabel.MEKAClassifier
-
- m_L - Variable in class moa.classifiers.multilabel.meta.MLOzaBag
-
- m_L - Variable in class moa.classifiers.multilabel.meta.MLOzaBagAdwin
-
- m_L - Variable in class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- m_L - Variable in class moa.core.utils.Converter
-
- m_L - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- m_lambda - Variable in class moa.classifiers.functions.SGD
-
The regularization parameter
- m_lambda - Variable in class moa.classifiers.functions.SGDMultiClass
-
The regularization parameter
- m_lambda - Variable in class moa.classifiers.functions.SPegasos
-
The regularization parameter
- m_Last - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
The last node in the list.
- m_learningRate - Variable in class moa.classifiers.functions.SGD
-
The learning rate
- m_learningRate - Variable in class moa.classifiers.functions.SGDMultiClass
-
The learning rate
- m_Left - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
left subtree; contains instances with smaller or equal to split value.
- m_Length - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
The number of nodes to attempt to maintain in the list.
- m_loss - Variable in class moa.classifiers.functions.SGD
-
The current loss function to minimize
- m_loss - Variable in class moa.classifiers.functions.SGDMultiClass
-
The current loss function to minimize
- m_loss - Variable in class moa.classifiers.functions.SPegasos
-
The current loss function to minimize
- m_MaxDepth - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
Tree stats.
- m_MaxInstInLeaf - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
maximal number of instances in a leaf.
- m_MeasurePerformance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Should we measure Performance.
- m_MetaRandom - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- m_MinBoxRelWidth - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
minimal relative width of a KDTree rectangle.
- m_MultilabelInstancesHeader - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- m_Next - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
-
A link to the next neighbor instance.
- m_NodeNumber - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
node number (only for debug).
- m_NodeRanges - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
lowest and highest value and width (= high - low) for each
dimension.
- m_NodesRectBounds - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
The lo and high bounds of the hyper rectangle described by the
node.
- m_nOnlyInlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- m_nOnlyInlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- m_nOnlyInlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- m_nOnlyInlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- m_nOnlyOutlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- m_nOnlyOutlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- m_nOnlyOutlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- m_nOnlyOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- m_normal - Static variable in class moa.clusterers.CobWeb
-
Normal constant.
- m_NormalizeNodeWidth - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Stores whether if the width of a KDTree
node is normalized or not.
- m_numberMerges - Variable in class moa.clusterers.CobWeb
-
the number of merges that happened
- m_numberOfClusters - Variable in class moa.clusterers.CobWeb
-
Number of clusters (nodes in the tree).
- m_numberOfClustersDetermined - Variable in class moa.clusterers.CobWeb
-
whether the number of clusters was already determined
- m_numberSplits - Variable in class moa.clusterers.CobWeb
-
the number of splits that happened
- m_numClasses - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
-
number of class values
- m_numInstances - Variable in class moa.classifiers.functions.SGD
-
The number of training instances
- m_numInstances - Variable in class moa.classifiers.functions.SGDMultiClass
-
The number of training instances
- m_NumLeaves - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
Tree stats.
- m_NumNodes - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
Tree stats.
- m_outlier - Variable in class moa.gui.visualization.RunOutlierVisualizer
-
- m_Present - Static variable in class moa.core.SizeOf
-
whether the agent is present.
- m_probOfClass - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
-
the probability of a class (i.e.
- m_QueryFreq - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- m_radius - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- m_radius - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- m_radius - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- m_radius - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- m_Ranges - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
The range of the attributes.
- m_Right - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
right subtree; contains instances with larger than split value.
- m_Root - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
The root node of the tree.
- m_saveInstances - Variable in class moa.clusterers.CobWeb
-
Output instances in graph representation of Cobweb tree (Allows
instances at nodes in the tree to be visualized in the Explorer).
- m_SkipIdentical - Variable in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Whether to skip instances from the neighbours that are identical to the query instance.
- m_SplitDim - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
attribute to split on.
- m_Splitter - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
The node splitter.
- m_SplitValue - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
value to split on.
- m_Start - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
The start index of the portion of the master index array,
which stores the indices of the instances/points the node
contains.
- m_t - Variable in class moa.classifiers.functions.SGD
-
Holds the current iteration number
- m_t - Variable in class moa.classifiers.functions.SGDMultiClass
-
Holds the current iteration number
- m_t - Variable in class moa.classifiers.functions.SPegasos
-
Holds the current iteration number
- m_theta - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- m_TopCombinations - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- m_Validated - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Whether all the necessary preparations have been done.
- m_weights - Variable in class moa.classifiers.functions.SGD
-
Stores the weights (+ bias in the last element)
- m_weights - Variable in class moa.classifiers.functions.SGDMultiClass
-
Stores the weights (+ bias in the last element)
- m_weights - Variable in class moa.classifiers.functions.SPegasos
-
Stores the weights (+ bias in the last element)
- m_WindowSize - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- m_WindowSize - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
-
- m_WindowSize - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- m_WindowSize - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- m_wordTotalForClass - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
-
probability that a word (w) exists in a class (H) (i.e.
- magChangeOption - Variable in class moa.streams.generators.HyperplaneGenerator
-
- main(String[]) - Static method in class moa.clusterers.outliers.AbstractC.Test
-
- main(String[]) - Static method in class moa.clusterers.outliers.Angiulli.Test
-
- main(String[]) - Static method in class moa.clusterers.outliers.MCOD.Test
-
- main(String[]) - Static method in class moa.clusterers.outliers.SimpleCOD.Test
-
- main(String[]) - Static method in class moa.clusterers.outliers.TestSpeed
-
- main(String[]) - Static method in class moa.DoTask
-
Main method for running tasks from the command line.
- main(String[]) - Static method in class moa.gui.BatchCmd
-
- main(String[]) - Static method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- main(String[]) - Static method in class moa.gui.GUI
-
- main(String[]) - Static method in class moa.gui.GUIDefaults
-
only for testing - prints the content of the props file.
- main(String[]) - Static method in class moa.gui.OptionsConfigurationPanel
-
- main(String[]) - Static method in class moa.gui.RegressionTaskManagerPanel
-
- main(String[]) - Static method in class moa.gui.TaskLauncher
-
- main(String[]) - Static method in class moa.gui.TaskManagerPanel
-
- main(String[]) - Static method in class moa.MakeObject
-
Main method for writing an object to a file from the command line.
- main(String[]) - Static method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- main(String[]) - Static method in class weka.classifiers.meta.MOA
-
Main method for testing this class.
- main(String[]) - Static method in class weka.datagenerators.classifiers.classification.MOA
-
Main method for executing this class.
- mainFindBestValEntropy(BinaryTreeNumericAttributeClassObserver.Node) - Method in class moa.classifiers.rules.RuleClassifier
-
- MainTask - Class in moa.tasks
-
Abstract Main Task.
- MainTask() - Constructor for class moa.tasks.MainTask
-
- MajorityClass - Class in moa.classifiers.functions
-
Majority class learner.
- MajorityClass() - Constructor for class moa.classifiers.functions.MajorityClass
-
- MajorityLabelset - Class in moa.classifiers.multilabel
-
Majority Labelset classifier.
- MajorityLabelset() - Constructor for class moa.classifiers.multilabel.MajorityLabelset
-
- MakeObject - Class in moa
-
Class for writing a MOA object to a file from the command line.
- MakeObject() - Constructor for class moa.MakeObject
-
- makeOlder(long, double) - Method in class moa.clusterers.clustree.ClusKernel
-
Make this cluster older.
- makeOlder(long, double) - Method in class moa.clusterers.clustree.Entry
-
Ages this entrie's data AND buffer according to the given
time and aging constant.
- makeOlder(long, double) - Method in class moa.clusterers.clustree.Node
-
- manageMemory(int, int) - Method in class moa.classifiers.bayes.NaiveBayes
-
- manageMemory(int, int) - Method in class moa.classifiers.rules.RuleClassifier
-
- manager - Variable in class moa.clusterers.streamkm.StreamKM
-
- manipulateIds() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
resets the ids, so that the set contains ids from 0 to noOfObjects-1
- marker - Variable in class moa.classifiers.lazy.kNNwithPAW
-
- marker - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
-
- materializeObject(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractClassOption
-
Gets a materialized object of this option.
- matrixCodes - Variable in class moa.classifiers.meta.LeveragingBag
-
- matrixCodes - Variable in class moa.classifiers.meta.LimAttClassifier
-
- matrixCodes - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- maturityOption - Variable in class moa.classifiers.meta.DACC
-
Maturity age of classifiers
- MAX - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
The index of MAX value in attributes' range array.
- MAX - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Index of max value in an array of attributes' range.
- MAX_PANEL_HEIGHT - Static variable in class moa.gui.OptionsConfigurationPanel
-
- MAX_STATUS_STRING_LENGTH - Static variable in class moa.DoTask
-
Maximum length of the status string that shows the progress of tasks running.
- maxBranches() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalBinaryTest
-
- maxBranches() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
-
Gets the number of maximum branches, -1 if unknown.
- maxBranches() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
-
- MAXBUCKETS - Static variable in class moa.classifiers.core.driftdetection.ADWIN
-
- maxBucketsize - Variable in class moa.clusterers.streamkm.BucketManager
-
- maxByteSizeOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Determines the maximum size of model (evaluated after every chunk).
- maxByteSizeOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Determines the maximum size of model (evaluated after every chunk).
- maxByteSizeOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- maxByteSizeOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- maxDepth - Variable in class moa.classifiers.trees.ORTO
-
- maxHeight - Variable in class moa.clusterers.clustree.ClusTree
-
The maximal height of the tree.
- maxHeightOption - Variable in class moa.clusterers.clustree.ClusTree
-
- maxID - Variable in class moa.classifiers.trees.FIMTDD
-
- maxID - Variable in class moa.classifiers.trees.ORTO
-
- maximumCacheSizeOption - Variable in class moa.tasks.CacheShuffledStream
-
- maxIndex() - Method in class moa.core.DoubleVector
-
- maxInstancesOption - Variable in class moa.tasks.EvaluateModel
-
- maxInstancesOption - Variable in class moa.tasks.EvaluateModelRegression
-
- maxInstancesOption - Variable in class moa.tasks.LearnModel
-
- maxInstancesOption - Variable in class moa.tasks.LearnModelRegression
-
- maxInstancesOption - Variable in class moa.tasks.WriteStreamToARFFFile
-
- maxInstInLeafTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Tip text for this property.
- maxMemberCount - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- maxMemoryOption - Variable in class moa.tasks.EvaluateInterleavedChunks
-
Allows to define the memory limit for the created model.
- maxNodeCapacity - Variable in class moa.clusterers.outliers.utils.mtree.MTree
-
- maxNodes - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
-
- maxNodesOption - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
-
- maxNumKernelsOption - Variable in class moa.clusterers.clustream.Clustream
-
- maxNumKernelsOption - Variable in class moa.clusterers.clustream.WithKmeans
-
- MaxOptionLevelOption - Variable in class moa.classifiers.trees.ORTO
-
- maxOptionPathsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- MAXPERMANENT - Static variable in class moa.classifiers.meta.ADACC
-
Maximum number of snapshots (copies of classifiers kept in case of recurrence)
- maxPosterior - Variable in class moa.classifiers.active.ActiveClassifier
-
- maxPredictionPaths - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- maxRating - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- maxSize - Variable in class moa.classifiers.trees.ASHoeffdingTree
-
- maxStoredCount - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- maxTreeDepthOption - Variable in class moa.streams.generators.RandomTreeGenerator
-
- MaxTreesOption - Variable in class moa.classifiers.trees.ORTO
-
- maxVal - Variable in class moa.options.FloatOption
-
- maxVal - Variable in class moa.options.IntOption
-
- maxValueObservedPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- mc - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- mcc - Variable in class moa.clusterers.outliers.MCOD.MicroCluster
-
- mcCorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
-
- mcCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
-
- mcCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
-
- mcCorrectWeight - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
-
- mcCorrectWeight - Variable in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
-
- MCOD - Class in moa.clusterers.outliers.MCOD
-
- MCOD() - Constructor for class moa.clusterers.outliers.MCOD.MCOD
-
- MCODBase - Class in moa.clusterers.outliers.MCOD
-
- MCODBase() - Constructor for class moa.clusterers.outliers.MCOD.MCODBase
-
- MCODBase.EventItem - Class in moa.clusterers.outliers.MCOD
-
- MCODBase.EventItem(ISBIndex.ISBNode, Long) - Constructor for class moa.clusterers.outliers.MCOD.MCODBase.EventItem
-
- MCODBase.EventQueue - Class in moa.clusterers.outliers.MCOD
-
- MCODBase.EventQueue() - Constructor for class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
-
- mean - Variable in class moa.core.GaussianEstimator
-
- measureByteSize() - Method in class moa.AbstractMOAObject
-
- measureByteSize(MOAObject) - Static method in class moa.AbstractMOAObject
-
Gets the memory size of an object.
- measureByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- measureByteSize() - Method in class moa.classifiers.trees.HoeffdingTree
-
- measureByteSize() - Method in class moa.core.AutoExpandVector
-
- measureByteSize() - Method in interface moa.MOAObject
-
Gets the memory size of this object.
- MeasureCollection - Class in moa.evaluation
-
- MeasureCollection() - Constructor for class moa.evaluation.MeasureCollection
-
- measureCollectionTypeOption - Variable in class moa.tasks.EvaluateClustering
-
- measureMaxDepth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the depth of the tree.
- Measurement - Class in moa.core
-
Class for storing an evaluation measurement.
- Measurement(String, double) - Constructor for class moa.core.Measurement
-
- measurementNames - Variable in class moa.evaluation.LearningCurve
-
- measurements - Variable in class moa.evaluation.LearningEvaluation
-
- measurementValues - Variable in class moa.evaluation.LearningCurve
-
- measureNumLeaves() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the number of leaves.
- measureObjectByteSize(Serializable) - Static method in class moa.core.SerializeUtils
-
- measurePerformanceTipText() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Returns the tip text for this property.
- MeasureStreamSpeed - Class in moa.tasks
-
Task for measuring the speed of the stream.
- MeasureStreamSpeed() - Constructor for class moa.tasks.MeasureStreamSpeed
-
- measureTreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- measureTreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree
-
- measureTreeSize() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the size of the tree.
- MedianOfWidestDimension - Class in moa.classifiers.lazy.neighboursearch.kdtrees
-
The class that splits a KDTree node based on the median value of a dimension in which the node's points have the widest spread.
For more information see also:
Jerome H.
- MedianOfWidestDimension() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
-
- MEKAClassifier - Class in moa.classifiers.multilabel
-
Class for using a MEKA classifier.
- MEKAClassifier() - Constructor for class moa.classifiers.multilabel.MEKAClassifier
-
- memberCountOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Number of component classifiers.
- memberCountOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Number of component classifiers.
- memberCountOption - Variable in class moa.classifiers.meta.DACC
-
Ensemble size
- memberCountOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Number of component classifiers.
- MembershipMatrix - Class in moa.evaluation
-
- MembershipMatrix(Clustering, ArrayList<DataPoint>) - Constructor for class moa.evaluation.MembershipMatrix
-
- memCheckFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedChunks
-
Allows to define the frequency of memory checks.
- memCheckFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequential
-
- memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialRegression
-
- memCheckFrequencyOption - Variable in class moa.tasks.LearnModel
-
- memCheckFrequencyOption - Variable in class moa.tasks.LearnModelRegression
-
- memoryEstimatePeriodOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- memoryEstimatePeriodOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- memoryStrategyOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- MemRecommenderData - Class in moa.recommender.data
-
- MemRecommenderData() - Constructor for class moa.recommender.data.MemRecommenderData
-
- MemRecommenderData - Class in moa.recommender.rc.data.impl
-
- MemRecommenderData() - Constructor for class moa.recommender.rc.data.impl.MemRecommenderData
-
- MemRecommenderData.RatingIterator - Class in moa.recommender.rc.data.impl
-
- merge(SphereCluster) - Method in class moa.cluster.SphereCluster
-
- mergeEntries(int, int) - Method in class moa.clusterers.clustree.Node
-
Merge the two entries at the given position.
- mergeWith(Entry) - Method in class moa.clusterers.clustree.Entry
-
Merge this entry witht the given Entry
.
- merit - Variable in class moa.classifiers.core.AttributeSplitSuggestion
-
- MetaMultilabelGenerator - Class in moa.streams.generators.multilabel
-
Stream generator for multilabel data.
- MetaMultilabelGenerator() - Constructor for class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- metaRandomSeedOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- MicroCluster - Class in moa.clusterers.denstream
-
- MicroCluster(double[], int, long, double, Timestamp) - Constructor for class moa.clusterers.denstream.MicroCluster
-
- MicroCluster(Instance, int, long, double, Timestamp) - Constructor for class moa.clusterers.denstream.MicroCluster
-
- MicroCluster - Class in moa.clusterers.outliers.MCOD
-
- MicroCluster(ISBIndex.ISBNode) - Constructor for class moa.clusterers.outliers.MCOD.MicroCluster
-
- MidPointOfWidestDimension - Class in moa.classifiers.lazy.neighboursearch.kdtrees
-
The class that splits a KDTree node based on the midpoint value of a dimension in which the node's points have the widest spread.
For more information see also:
Andrew Moore (1991).
- MidPointOfWidestDimension() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
-
- MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.RegressionTaskManagerPanel
-
- MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.TaskManagerPanel
-
- MIN - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
-
The index of MIN value in attributes' range array.
- MIN - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Index of min value in an array of attributes' range.
- MIN_VARIANCE - Static variable in class moa.clusterers.clustream.ClustreamKernel
-
- MIN_VARIANCE - Static variable in class moa.clusterers.clustree.ClusKernel
-
- minBoxRelWidthTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Tip text for this property.
- minBranchFracOption - Variable in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- Miniball - Class in moa.cluster
-
Java Porting of the Miniball.h code of Bernd Gaertner.
- Miniball(int) - Constructor for class moa.cluster.Miniball
-
- minimumValue - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- minMax(Iterable<T>) - Static method in class moa.clusterers.outliers.utils.mtree.utils.Utils
-
Identifies the minimum and maximum elements from an iterable, according
to the natural ordering of the elements.
- minNodeCapacity - Variable in class moa.clusterers.outliers.utils.mtree.MTree
-
- minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
-
- minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.DDM
-
- minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.EWMAChartDM
-
- minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
-
- minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- minRating - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- minVal - Variable in class moa.options.FloatOption
-
- minVal - Variable in class moa.options.IntOption
-
- minValueObservedPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- minWeight() - Method in class moa.core.DoubleVector
-
- MiscUtils - Class in moa.core
-
Class implementing some utility methods.
- MiscUtils() - Constructor for class moa.core.MiscUtils
-
- missingWeightObserved - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- MLOzaBag - Class in moa.classifiers.multilabel.meta
-
OzaBag for Multi-label data.
- MLOzaBag() - Constructor for class moa.classifiers.multilabel.meta.MLOzaBag
-
- MLOzaBagAdwin - Class in moa.classifiers.multilabel.meta
-
MLOzaBagAdwin: Changes the way to compute accuracy as an input for Adwin
- MLOzaBagAdwin() - Constructor for class moa.classifiers.multilabel.meta.MLOzaBagAdwin
-
- moa - package moa
-
- MOA - Class in weka.classifiers.meta
-
Wrapper for MOA classifiers.
Since MOA doesn't offer a mechanism to query a classifier for the types of attributes and classes it can handle, the capabilities of this wrapper are hard-coded: nominal and numeric attributes and only nominal class attributes are allowed.
- MOA() - Constructor for class weka.classifiers.meta.MOA
-
- MOA - Class in weka.datagenerators.classifiers.classification
-
A wrapper around MOA instance streams.
- MOA() - Constructor for class weka.datagenerators.classifiers.classification.MOA
-
- moa.classifiers - package moa.classifiers
-
- moa.classifiers.active - package moa.classifiers.active
-
- moa.classifiers.bayes - package moa.classifiers.bayes
-
- moa.classifiers.core - package moa.classifiers.core
-
- moa.classifiers.core.attributeclassobservers - package moa.classifiers.core.attributeclassobservers
-
- moa.classifiers.core.conditionaltests - package moa.classifiers.core.conditionaltests
-
- moa.classifiers.core.driftdetection - package moa.classifiers.core.driftdetection
-
- moa.classifiers.core.splitcriteria - package moa.classifiers.core.splitcriteria
-
- moa.classifiers.drift - package moa.classifiers.drift
-
- moa.classifiers.functions - package moa.classifiers.functions
-
- moa.classifiers.lazy - package moa.classifiers.lazy
-
- moa.classifiers.lazy.neighboursearch - package moa.classifiers.lazy.neighboursearch
-
- moa.classifiers.lazy.neighboursearch.kdtrees - package moa.classifiers.lazy.neighboursearch.kdtrees
-
- moa.classifiers.meta - package moa.classifiers.meta
-
- moa.classifiers.multilabel - package moa.classifiers.multilabel
-
- moa.classifiers.multilabel.meta - package moa.classifiers.multilabel.meta
-
- moa.classifiers.rules - package moa.classifiers.rules
-
- moa.classifiers.rules.core - package moa.classifiers.rules.core
-
- moa.classifiers.rules.core.attributeclassobservers - package moa.classifiers.rules.core.attributeclassobservers
-
- moa.classifiers.rules.core.conditionaltests - package moa.classifiers.rules.core.conditionaltests
-
- moa.classifiers.rules.core.splitcriteria - package moa.classifiers.rules.core.splitcriteria
-
- moa.classifiers.rules.core.voting - package moa.classifiers.rules.core.voting
-
- moa.classifiers.rules.driftdetection - package moa.classifiers.rules.driftdetection
-
- moa.classifiers.rules.functions - package moa.classifiers.rules.functions
-
- moa.classifiers.rules.nodes - package moa.classifiers.rules.nodes
-
- moa.classifiers.trees - package moa.classifiers.trees
-
- moa.cluster - package moa.cluster
-
- moa.clusterers - package moa.clusterers
-
- moa.clusterers.clustream - package moa.clusterers.clustream
-
- moa.clusterers.clustree - package moa.clusterers.clustree
-
- moa.clusterers.clustree.util - package moa.clusterers.clustree.util
-
- moa.clusterers.denstream - package moa.clusterers.denstream
-
- moa.clusterers.macro - package moa.clusterers.macro
-
- moa.clusterers.macro.dbscan - package moa.clusterers.macro.dbscan
-
- moa.clusterers.outliers - package moa.clusterers.outliers
-
- moa.clusterers.outliers.AbstractC - package moa.clusterers.outliers.AbstractC
-
- moa.clusterers.outliers.Angiulli - package moa.clusterers.outliers.Angiulli
-
- moa.clusterers.outliers.AnyOut - package moa.clusterers.outliers.AnyOut
-
- moa.clusterers.outliers.AnyOut.util - package moa.clusterers.outliers.AnyOut.util
-
- moa.clusterers.outliers.MCOD - package moa.clusterers.outliers.MCOD
-
- moa.clusterers.outliers.SimpleCOD - package moa.clusterers.outliers.SimpleCOD
-
- moa.clusterers.outliers.utils.mtree - package moa.clusterers.outliers.utils.mtree
-
- moa.clusterers.outliers.utils.mtree.utils - package moa.clusterers.outliers.utils.mtree.utils
-
- moa.clusterers.streamkm - package moa.clusterers.streamkm
-
- moa.core - package moa.core
-
- moa.core.utils - package moa.core.utils
-
- moa.evaluation - package moa.evaluation
-
- moa.gui - package moa.gui
-
- moa.gui.clustertab - package moa.gui.clustertab
-
- moa.gui.conceptdrift - package moa.gui.conceptdrift
-
- moa.gui.outliertab - package moa.gui.outliertab
-
- moa.gui.visualization - package moa.gui.visualization
-
- moa.learners - package moa.learners
-
- moa.options - package moa.options
-
- moa.recommender.data - package moa.recommender.data
-
- moa.recommender.dataset - package moa.recommender.dataset
-
- moa.recommender.dataset.impl - package moa.recommender.dataset.impl
-
- moa.recommender.predictor - package moa.recommender.predictor
-
- moa.recommender.rc.data - package moa.recommender.rc.data
-
- moa.recommender.rc.data.impl - package moa.recommender.rc.data.impl
-
- moa.recommender.rc.predictor - package moa.recommender.rc.predictor
-
- moa.recommender.rc.predictor.impl - package moa.recommender.rc.predictor.impl
-
- moa.recommender.rc.utils - package moa.recommender.rc.utils
-
- moa.streams - package moa.streams
-
- moa.streams.clustering - package moa.streams.clustering
-
- moa.streams.filters - package moa.streams.filters
-
- moa.streams.generators - package moa.streams.generators
-
- moa.streams.generators.cd - package moa.streams.generators.cd
-
- moa.streams.generators.multilabel - package moa.streams.generators.multilabel
-
- moa.tasks - package moa.tasks
-
- MOAClassOptionEditor - Class in weka.gui
-
An editor for MOA ClassOption objects.
- MOAClassOptionEditor() - Constructor for class weka.gui.MOAClassOptionEditor
-
- MOAObject - Interface in moa
-
Interface implemented by classes in MOA, so that all are serializable,
can produce copies of their objects, and can measure its memory size.
- MOAUtils - Class in weka.core
-
A helper class for MOA related classes.
- MOAUtils() - Constructor for class weka.core.MOAUtils
-
- modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.classifiers.AbstractClassifier
-
Gets the index of the attribute in the instance,
given the index of the attribute in the learner.
- modelAttIndexToInstanceAttIndex(int, Instances) - Static method in class moa.classifiers.AbstractClassifier
-
Gets the index of the attribute in a set of instances,
given the index of the attribute in the learner.
- modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.classifiers.rules.AbstractAMRules
-
Gets the index of the attribute in the instance,
given the index of the attribute in the learner.
- modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.clusterers.AbstractClusterer
-
- modelAttIndexToInstanceAttIndex(int, Instances) - Static method in class moa.clusterers.AbstractClusterer
-
- modelContext - Variable in class moa.classifiers.AbstractClassifier
-
Header of the instances of the data stream
- modelContext - Variable in class moa.clusterers.AbstractClusterer
-
- modelOption - Variable in class moa.tasks.EvaluateModel
-
- modelOption - Variable in class moa.tasks.EvaluateModelRegression
-
- modelRandomSeedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- modelRandomSeedOption - Variable in class moa.streams.generators.RandomRBFGenerator
-
- modifyDependencyMatrix(boolean[][], double, Random) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
ModifyDependencyMatrix.
- modifyPriorVector(double[], double, Random, boolean) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
ModifyPriorVector.
- monitorMeanDecr(double, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- monitorMeanIncr(double, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- moreImprovementsPossible(int, double) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- mouseClicked(int, int) - Method in interface moa.gui.AWTInteractiveRenderer
-
- MovielensDataset - Class in moa.recommender.dataset.impl
-
- MovielensDataset() - Constructor for class moa.recommender.dataset.impl.MovielensDataset
-
- mse_r - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
The mean square residual in a given moment, based on a window of latest examples.
- MTRandom - Class in moa.clusterers.streamkm
-
- MTRandom() - Constructor for class moa.clusterers.streamkm.MTRandom
-
The default constructor for an instance of MTRandom.
- MTRandom(boolean) - Constructor for class moa.clusterers.streamkm.MTRandom
-
This version of the constructor can be used to implement identical
behaviour to the original C code version of this algorithm including
exactly replicating the case where the seed value had not been set
prior to calling genrand_int32.
- MTRandom(long) - Constructor for class moa.clusterers.streamkm.MTRandom
-
This version of the constructor simply initialises the class with
the given 64 bit seed value.
- MTRandom(byte[]) - Constructor for class moa.clusterers.streamkm.MTRandom
-
This version of the constructor initialises the class with the
given byte array.
- MTRandom(int[]) - Constructor for class moa.clusterers.streamkm.MTRandom
-
This version of the constructor initialises the class with the
given integer array.
- MTree<DATA> - Class in moa.clusterers.outliers.utils.mtree
-
The main class that implements the M-Tree.
- MTree(DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
-
Constructs an M-Tree with the specified distance function.
- MTree(int, DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
-
Constructs an M-Tree with the specified minimum node capacity and
distance function.
- MTree(int, int, DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
-
Constructs an M-Tree with the specified minimum and maximum node
capacities and distance function.
- MTree.Query - Class in moa.clusterers.outliers.utils.mtree
-
An
Iterable
class which can be iterated to fetch the results of a
nearest-neighbors query.
- MTree.ResultItem - Class in moa.clusterers.outliers.utils.mtree
-
The type of the results for nearest-neighbor queries.
- mtreeMC - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- MultiChoiceOption - Class in moa.options
-
Multi choice option.
- MultiChoiceOption(String, char, String, String[], String[], int) - Constructor for class moa.options.MultiChoiceOption
-
- MultiChoiceOptionEditComponent - Class in moa.gui
-
An OptionEditComponent that lets the user edit a multi choice option.
- MultiChoiceOptionEditComponent(MultiChoiceOption) - Constructor for class moa.gui.MultiChoiceOptionEditComponent
-
- MultiFilteredStream - Class in moa.streams
-
Class for representing a stream that is filtered.
- MultiFilteredStream() - Constructor for class moa.streams.MultiFilteredStream
-
- MultilabelArffFileStream - Class in moa.streams.generators.multilabel
-
Stream reader for ARFF files of multilabel data.
- MultilabelArffFileStream() - Constructor for class moa.streams.generators.multilabel.MultilabelArffFileStream
-
- MultilabelArffFileStream(String, int) - Constructor for class moa.streams.generators.multilabel.MultilabelArffFileStream
-
- MultilabelHoeffdingTree - Class in moa.classifiers.multilabel
-
Hoeffding Tree for classifying multi-label data.
- MultilabelHoeffdingTree() - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- MultilabelHoeffdingTree.MultilabelInactiveLearningNode - Class in moa.classifiers.multilabel
-
- MultilabelHoeffdingTree.MultilabelInactiveLearningNode(double[]) - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelInactiveLearningNode
-
- MultilabelHoeffdingTree.MultilabelLearningNodeClassifier - Class in moa.classifiers.multilabel
-
- MultilabelHoeffdingTree.MultilabelLearningNodeClassifier(double[], Classifier, MultilabelHoeffdingTree) - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
-
- MultilabelInstance - Class in moa.core
-
Multilabel instance.
- MultilabelInstance() - Constructor for class moa.core.MultilabelInstance
-
- MultilabelInstancesHeader - Class in moa.core
-
Class for storing the header or context of a multilabel data stream.
- MultilabelInstancesHeader(Instances, int) - Constructor for class moa.core.MultilabelInstancesHeader
-
- multilabelStreamTemplate - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- MultilabelWindowClassificationPerformanceEvaluator - Class in moa.evaluation
-
Multilabel Window Classification Performance Evaluator.
- MultilabelWindowClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
-
- multivariateAnomalyProbabilityThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- muOption - Variable in class moa.clusterers.denstream.WithDBSCAN
-
- mVisibleColors - Static variable in class moa.clusterers.macro.ColorArray
-
- MyBaseOutlierDetector - Class in moa.clusterers.outliers
-
- MyBaseOutlierDetector() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector
-
- MyBaseOutlierDetector.Outlier - Class in moa.clusterers.outliers
-
- MyBaseOutlierDetector.Outlier(Instance, long, Object) - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
-
- MyBaseOutlierDetector.OutlierNotifier - Class in moa.clusterers.outliers
-
- MyBaseOutlierDetector.OutlierNotifier() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.OutlierNotifier
-
- MyBaseOutlierDetector.PrintMsg - Interface in moa.clusterers.outliers
-
- MyBaseOutlierDetector.ProgressInfo - Interface in moa.clusterers.outliers
-
- MyBaseOutlierDetector.StdPrintMsg - Class in moa.clusterers.outliers
-
- MyBaseOutlierDetector.StdPrintMsg() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- MyBaseOutlierDetector.StdPrintMsg(String) - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- myOut - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- myProgressInfo - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- n - Variable in class moa.classifiers.rules.functions.TargetMean
-
- N - Variable in class moa.cluster.CFCluster
-
Number of points in the cluster.
- n_max - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- n_min - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- NaiveBayes - Class in moa.classifiers.bayes
-
Naive Bayes incremental learner.
- NaiveBayes() - Constructor for class moa.classifiers.bayes.NaiveBayes
-
- NaiveBayesMultinomial - Class in moa.classifiers.bayes
-
Class for building and using a multinomial Naive
Bayes classifier.
- NaiveBayesMultinomial() - Constructor for class moa.classifiers.bayes.NaiveBayesMultinomial
-
- name - Variable in class moa.core.Measurement
-
- name - Variable in class moa.options.AbstractOption
-
Name of this option.
- nameIsLegal(String) - Static method in class moa.options.AbstractOption
-
Gets whether the name is valid or not.
- nanoTimeToSeconds(long) - Static method in class moa.core.TimingUtils
-
- nbCorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
-
- nbCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
-
- nbCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
-
- nbCorrectWeight - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
-
- nbCorrectWeight - Variable in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
-
- nbInstances - Variable in class moa.classifiers.meta.DACC
-
Number of instances from the stream
- nbThresholdOption - Variable in class moa.classifiers.rules.RuleClassifierNBayes
-
- nbThresholdOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- nbThresholdOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- nearestEntry(ClusKernel) - Method in class moa.clusterers.clustree.Node
-
Returns the neareast Entry
to the given Cluster
.
- nearestEntry(Entry) - Method in class moa.clusterers.clustree.Node
-
Return the nearest entry to the given one.
- nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the nearest neighbour of the supplied target
instance.
- nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Returns the nearest instance in the current neighbourhood to the supplied
instance.
- nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Returns the nearest instance in the current neighbourhood to the supplied
instance.
- NearestNeighbourSearch - Class in moa.classifiers.lazy.neighboursearch
-
Abstract class for nearest neighbour search.
- NearestNeighbourSearch() - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Constructor.
- NearestNeighbourSearch(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Constructor.
- NearestNeighbourSearch.MyHeap - Class in moa.classifiers.lazy.neighboursearch
-
A class for a heap to store the nearest k neighbours to an instance.
- NearestNeighbourSearch.MyHeap(int) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
constructor.
- NearestNeighbourSearch.MyHeapElement - Class in moa.classifiers.lazy.neighboursearch
-
A class for storing data about a neighboring instance.
- NearestNeighbourSearch.MyHeapElement(int, double) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
-
constructor.
- NearestNeighbourSearch.NeighborList - Class in moa.classifiers.lazy.neighboursearch
-
A class for a linked list to store the nearest k neighbours
to an instance.
- NearestNeighbourSearch.NeighborList(int) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
Creates the neighborlist with a desired length.
- NearestNeighbourSearch.NeighborNode - Class in moa.classifiers.lazy.neighboursearch
-
A class for storing data about a neighboring instance.
- NearestNeighbourSearch.NeighborNode(double, Instance, NearestNeighbourSearch.NeighborNode) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
-
Create a new neighbor node.
- NearestNeighbourSearch.NeighborNode(double, Instance) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
-
Create a new neighbor node that doesn't link to any other nodes.
- nearestNeighbourSearchOption - Variable in class moa.classifiers.lazy.kNN
-
- negLambda - Variable in class moa.clusterers.clustree.ClusTree
-
Parameter for the weighting function use to weight the entries.
- nError - Variable in class moa.classifiers.rules.functions.TargetMean
-
- nEstimacion - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- newclassifier - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- newClassifierReset - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- newErrorWeightedVote() - Method in class moa.classifiers.rules.AbstractAMRules
-
- newErrorWeightedVote() - Method in class moa.classifiers.rules.AMRulesRegressor
-
- newLeafModel() - Method in class moa.classifiers.trees.FIMTDD
-
- newLeafNode() - Method in class moa.classifiers.trees.FIMTDD
-
- newLearningNode(double[]) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
-
- newLearningNode(double[], Classifier) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
-
- newLearningNode(double[]) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- newLearningNode(double[], Classifier) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- newLearningNode(double[]) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree
-
- newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- newLearningNode() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- newLearningNode() - Method in class moa.classifiers.trees.HoeffdingTree
-
- newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingTree
-
- newLearningNode(double[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree
-
- newLearningNode(double[]) - Method in class moa.classifiers.trees.RandomHoeffdingTree
-
- newline - Static variable in class moa.core.StringUtils
-
- newNominalClassObserver() - Method in class moa.classifiers.bayes.NaiveBayes
-
- newNominalClassObserver() - Method in class moa.classifiers.rules.RuleClassifier
-
- newNominalClassObserver() - Method in class moa.classifiers.trees.DecisionStump
-
- newNominalClassObserver() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- newNominalClassObserver() - Method in class moa.classifiers.trees.HoeffdingTree
-
- newNumericClassObserver() - Method in class moa.classifiers.bayes.NaiveBayes
-
- newNumericClassObserver() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- newNumericClassObserver() - Method in class moa.classifiers.rules.RuleClassifier
-
- newNumericClassObserver() - Method in class moa.classifiers.trees.DecisionStump
-
- newNumericClassObserver() - Method in class moa.classifiers.trees.FIMTDD
-
- newNumericClassObserver() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- newNumericClassObserver() - Method in class moa.classifiers.trees.HoeffdingTree
-
- newNumericClassObserver() - Method in class moa.classifiers.trees.ORTO
-
- newNumericClassObserver2() - Method in class moa.classifiers.rules.RuleClassifier
-
- newRule(int, RuleActiveLearningNode, double[]) - Method in class moa.classifiers.rules.AbstractAMRules
-
Rule.Builder() to build an object with the parameters.
- newRule(int, RuleActiveLearningNode, double[]) - Method in class moa.classifiers.rules.AMRulesRegressor
-
- newRuleActiveLearningNode(Rule.Builder) - Method in class moa.classifiers.rules.AbstractAMRules
-
- newRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.AbstractAMRules
-
- newRuleActiveLearningNode(Rule.Builder) - Method in class moa.classifiers.rules.AMRulesRegressor
-
- newRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.AMRulesRegressor
-
- newSplitNode(InstanceConditionalTest) - Method in class moa.classifiers.trees.FIMTDD
-
- newSplitNode(InstanceConditionalTest, double[]) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- newSplitNode(InstanceConditionalTest, double[], int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- newSplitNode(InstanceConditionalTest, double[], int) - Method in class moa.classifiers.trees.HoeffdingTree
-
- newSplitNode(InstanceConditionalTest, double[]) - Method in class moa.classifiers.trees.HoeffdingTree
-
- newThreshold - Variable in class moa.classifiers.active.ActiveClassifier
-
- next(int) - Method in class moa.clusterers.streamkm.MTRandom
-
This method forms the basis for generating a pseudo random number
sequence from this class.
- next() - Method in interface moa.recommender.dataset.Dataset
-
- next() - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- next() - Method in class moa.recommender.dataset.impl.JesterDataset
-
- next() - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- next() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
-
- next() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
-
- next() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
-
- nextClassShouldBeZero - Variable in class moa.streams.generators.AgrawalGenerator
-
- nextClassShouldBeZero - Variable in class moa.streams.generators.SEAGenerator
-
- nextClassShouldBeZero - Variable in class moa.streams.generators.STAGGERGenerator
-
- nextInstance() - Method in class moa.streams.ArffFileStream
-
- nextInstance() - Method in class moa.streams.CachedInstancesStream
-
- nextInstance() - Method in class moa.streams.clustering.FileStream
-
- nextInstance() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- nextInstance() - Method in class moa.streams.ConceptDriftRealStream
-
- nextInstance() - Method in class moa.streams.ConceptDriftStream
-
- nextInstance() - Method in class moa.streams.FilteredStream
-
- nextInstance() - Method in class moa.streams.filters.AddNoiseFilter
-
- nextInstance() - Method in class moa.streams.filters.CacheFilter
-
- nextInstance() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
-
- nextInstance() - Method in class moa.streams.generators.AgrawalGenerator
-
- nextInstance() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- nextInstance() - Method in class moa.streams.generators.HyperplaneGenerator
-
- nextInstance() - Method in class moa.streams.generators.LEDGenerator
-
- nextInstance() - Method in class moa.streams.generators.LEDGeneratorDrift
-
- nextInstance() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
GenerateML.
- nextInstance() - Method in class moa.streams.generators.RandomRBFGenerator
-
- nextInstance() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
-
- nextInstance() - Method in class moa.streams.generators.RandomTreeGenerator
-
- nextInstance() - Method in class moa.streams.generators.SEAGenerator
-
- nextInstance() - Method in class moa.streams.generators.STAGGERGenerator
-
- nextInstance() - Method in class moa.streams.generators.WaveformGenerator
-
- nextInstance() - Method in class moa.streams.generators.WaveformGeneratorDrift
-
- nextInstance() - Method in interface moa.streams.InstanceStream
-
Gets the next instance from this stream.
- nextInstance() - Method in class moa.streams.MultiFilteredStream
-
- nextOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- nextValue() - Method in class moa.streams.generators.cd.AbruptChangeGenerator
-
- nextValue() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- nextValue() - Method in class moa.streams.generators.cd.GradualChangeGenerator
-
- nextValue() - Method in class moa.streams.generators.cd.NoChangeGenerator
-
- nFeatures - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- nInlier - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
-
- nInlier - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
-
- nInlier - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- nInlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- nItems - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- nIterations - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- noAnomalyDetectionOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- NoChange - Class in moa.classifiers.functions
-
NoChange class classifier.
- NoChange() - Constructor for class moa.classifiers.functions.NoChange
-
- NoChangeGenerator - Class in moa.streams.generators.cd
-
- NoChangeGenerator() - Constructor for class moa.streams.generators.cd.NoChangeGenerator
-
- node - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
-
- node - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
-
- Node - Class in moa.clusterers.clustree
-
- Node(int, int) - Constructor for class moa.clusterers.clustree.Node
-
Initialze a normal node, which is not fake.
- Node(int, int, int, boolean) - Constructor for class moa.clusterers.clustree.Node
-
Initialiazes a node which is a fake root depending on the given
boolean
.
- Node(int, int, Entry[]) - Constructor for class moa.clusterers.clustree.Node
-
USED FOR EM_TOP_DOWN BULK LOADING
- node - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
-
- node - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
-
- node - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
-
- node - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
-
- node - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
-
- node - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
-
- nodeList - Variable in class moa.classifiers.rules.core.Rule
-
- nodes - Variable in class moa.clusterers.outliers.MCOD.MicroCluster
-
- nodeSplitterTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Returns the tip text for this property.
- nodesReinsert - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- nodeStatistics - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- nodeStatistics - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- nodesToAdapt - Variable in class moa.classifiers.trees.ORTO
-
- nodeType - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- noiseInClusterOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- noiseLabel - Variable in class moa.gui.visualization.DataPoint
-
- noiseLevelOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- noisePercentageOption - Variable in class moa.streams.generators.HyperplaneGenerator
-
- noisePercentageOption - Variable in class moa.streams.generators.LEDGenerator
-
- noisePercentageOption - Variable in class moa.streams.generators.SEAGenerator
-
- NominalAttributeBinaryRulePredicate - Class in moa.classifiers.rules.core.conditionaltests
-
Nominal binary conditional test for instances to use to split nodes in rules.
- NominalAttributeBinaryRulePredicate(int, int) - Constructor for class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
-
- NominalAttributeBinaryTest - Class in moa.classifiers.core.conditionaltests
-
Nominal binary conditional test for instances to use to split nodes in Hoeffding trees.
- NominalAttributeBinaryTest(int, int) - Constructor for class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
-
- NominalAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
-
Class for observing the class data distribution for a nominal attribute.
- NominalAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- NominalAttributeMultiwayTest - Class in moa.classifiers.core.conditionaltests
-
Nominal multi way conditional test for instances to use to split nodes in Hoeffding trees.
- NominalAttributeMultiwayTest(int) - Constructor for class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
-
- nominalEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- nominalEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- nominalReplacementStrategyOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- nominalSelectedStrategy - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- NonConvexCluster - Class in moa.clusterers.macro
-
- NonConvexCluster(CFCluster, List<CFCluster>) - Constructor for class moa.clusterers.macro.NonConvexCluster
-
- noOfKthNearest() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
returns the number of k nearest.
- noPrePruneOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- noPrePruneOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- norm(double, int) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Normalizes a given value of a numeric attribute.
- norm() - Method in class moa.recommender.rc.utils.Vector
-
- NORMAL_CONSTANT - Static variable in class moa.classifiers.rules.AbstractAMRules
-
- NORMAL_CONSTANT - Static variable in class moa.core.GaussianEstimator
-
- NormalizableDistance - Class in moa.classifiers.lazy.neighboursearch
-
Represents the abstract ancestor for normalizable distance functions, like
Euclidean or Manhattan distance.
- NormalizableDistance() - Constructor for class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Invalidates the distance function, Instances must be still set.
- NormalizableDistance(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Initializes the distance function and automatically initializes the
ranges.
- normalize(double[]) - Method in class moa.classifiers.rules.RuleClassifierNBayes
-
- normalize() - Method in class moa.core.DoubleVector
-
- normalizedInstance(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
-
- normalizedInstance(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- normalizedPrediction(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
-
- normalizeNodeWidthTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Tip text for this property.
- normalizeOption - Variable in class moa.streams.clustering.FileStream
-
- normalizeTargetValue(double) - Method in class moa.classifiers.trees.FIMTDD
-
- normalizeWeights() - Method in class moa.classifiers.rules.functions.Perceptron
-
- notBinaryStreamOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- notifyChangeListeners() - Method in class moa.gui.ClassOptionEditComponent
-
Notifies all registered change listeners that the options have changed.
- notifyChangeListeners() - Method in class moa.gui.ClassOptionWithNamesEditComponent
-
Notifies all registered change listeners that the options have changed.
- nOutlier - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
-
- nOutlier - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
-
- nOutlier - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- nOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- nr_points() - Method in class moa.cluster.Miniball
-
Return the actual number of points in the list
- nr_support_points() - Method in class moa.cluster.Miniball
-
Return the number of support points (used to calculate the miniball).
It's and internal info
- nRangeQueriesExecuted - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- nRatings - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- nTimePerObj - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- nTotalRunTime - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- NullAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
-
Class for observing the class data distribution for a null attribute.
- NullAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
-
- NullMonitor - Class in moa.tasks
-
Class that represents a null monitor.
- NullMonitor() - Constructor for class moa.tasks.NullMonitor
-
- nullString - Variable in class moa.options.AbstractClassOption
-
The null text.
- NUM_BASE_ATTRIBUTES - Static variable in class moa.streams.generators.WaveformGenerator
-
- NUM_CLASSES - Static variable in class moa.streams.generators.WaveformGenerator
-
- NUM_IRRELEVANT_ATTRIBUTES - Static variable in class moa.streams.generators.LEDGenerator
-
- numAttributes - Variable in class moa.classifiers.meta.RandomRules
-
- numAttributes - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
-
- numAttributes - Variable in class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
-
- numAttributes - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- numAttributesOption - Variable in class moa.classifiers.meta.LimAttClassifier
-
- numAttributesPercentageOption - Variable in class moa.classifiers.meta.RandomRules
-
- numAttsOption - Variable in class moa.streams.clustering.ClusteringStream
-
- numAttsOption - Variable in class moa.streams.generators.HyperplaneGenerator
-
- numAttsOption - Variable in class moa.streams.generators.RandomRBFGenerator
-
- numberAttribute - Variable in class moa.streams.generators.LEDGeneratorDrift
-
- numberAttribute - Variable in class moa.streams.generators.WaveformGeneratorDrift
-
- numberAttributes - Variable in class moa.classifiers.functions.Perceptron
-
- numberAttributes - Variable in class moa.classifiers.meta.LimAttClassifier
-
- numberAttributesDriftOption - Variable in class moa.streams.generators.LEDGeneratorDrift
-
- numberAttributesDriftOption - Variable in class moa.streams.generators.WaveformGeneratorDrift
-
- numberChanges - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- numberClasses - Variable in class moa.classifiers.functions.Perceptron
-
- numberDetections - Variable in class moa.classifiers.functions.Perceptron
-
- numberDetections - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- numberDetectionsOccurred - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- numberInstance - Variable in class moa.streams.generators.HyperplaneGenerator
-
- numberInstances - Variable in class moa.classifiers.meta.WEKAClassifier
-
- numberInstances - Variable in class moa.clusterers.streamkm.StreamKM
-
- numberInstanceStream - Variable in class moa.streams.ConceptDriftRealStream
-
- numberInstanceStream - Variable in class moa.streams.ConceptDriftStream
-
- numberLeaves() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- numberLeaves() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- numberLeaves() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
-
- numberOfBuckets - Variable in class moa.clusterers.streamkm.BucketManager
-
- numberOfCentres - Variable in class moa.clusterers.streamkm.StreamKM
-
- numberOfChangesDetected - Variable in class moa.classifiers.meta.LeveragingBag
-
- numberOfChangesDetected - Variable in class moa.classifiers.meta.LimAttClassifier
-
- numberOfChangesDetected - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- numberOfClusters() - Method in class moa.clusterers.CobWeb
-
Returns the number of clusters.
- numberOfSamples - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- numberWarnings - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- numBinsOption - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- numBinsOption - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
-
- numBytesWritten - Variable in class moa.core.SerializeUtils.ByteCountingOutputStream
-
- numCentroidsOption - Variable in class moa.streams.generators.RandomRBFGenerator
-
- numChildren() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- numChildren() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- numChildren() - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- numClasses - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- numClasses - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- numClasses - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- numClassesOption - Variable in class moa.streams.generators.HyperplaneGenerator
-
- numClassesOption - Variable in class moa.streams.generators.RandomRBFGenerator
-
- numClassesOption - Variable in class moa.streams.generators.RandomTreeGenerator
-
- numClusterOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- numClusterRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- numClustersOption - Variable in class moa.clusterers.streamkm.StreamKM
-
- numDriftAttsOption - Variable in class moa.streams.generators.HyperplaneGenerator
-
- numDriftCentroidsOption - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
-
- numEnsemblePruningOption - Variable in class moa.classifiers.meta.LimAttClassifier
-
- numEntries() - Method in class moa.evaluation.LearningCurve
-
- numericalConstantValueOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- numericalSelectedStrategy - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- NumericAttributeBinaryRulePredicate - Class in moa.classifiers.rules.core.conditionaltests
-
Numeric binary conditional test for instances to use to split nodes in
AMRules.
- NumericAttributeBinaryRulePredicate(int, double, int) - Constructor for class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- NumericAttributeBinaryTest - Class in moa.classifiers.core.conditionaltests
-
Numeric binary conditional test for instances to use to split nodes in Hoeffding trees.
- NumericAttributeBinaryTest(int, double, boolean) - Constructor for class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
-
- NumericAttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
-
Interface for observing the class data distribution for a numeric attribute.
- numericEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- numericEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- numericEstimatorOption - Variable in class moa.classifiers.trees.ORTO
-
- numericObserverOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- numericReplacementStrategyOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
-
- numFolds - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- numFoldsOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Number of folds in candidate classifier cross-validation.
- numFreeEntries() - Method in class moa.clusterers.clustree.Node
-
Return the number of free Entry
s in this node.
- numInitPoints - Variable in class moa.clusterers.denstream.WithDBSCAN
-
- numInstances() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
-
Returns the number of Instances
in the rectangular region defined
by this node.
- numInstances - Variable in class moa.classifiers.meta.LimAttClassifier
-
- numInstances - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- numInstancesConcept - Variable in class moa.streams.generators.SEAGenerator
-
- numInstancesConceptOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- numInstancesInitOption - Variable in class moa.classifiers.active.ActiveClassifier
-
- numInstancesRead - Variable in class moa.streams.ArffFileStream
-
- numInstancesRead - Variable in class moa.streams.clustering.FileStream
-
- numLabelsOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- numLabelsOption - Variable in class moa.streams.generators.multilabel.MultilabelArffFileStream
-
- numNodes - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
-
- numNominalsOption - Variable in class moa.streams.generators.RandomTreeGenerator
-
- numNonZeroEntries() - Method in class moa.core.DoubleVector
-
- numNumericsOption - Variable in class moa.streams.generators.RandomTreeGenerator
-
- numObservations - Variable in class moa.core.GreenwaldKhannaQuantileSummary
-
- numOldLabelsOption - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- numOptions() - Method in class moa.options.Options
-
- numPassesOption - Variable in class moa.tasks.LearnModel
-
- numPassesOption - Variable in class moa.tasks.LearnModelRegression
-
- numProcessedPerUnit - Variable in class moa.clusterers.denstream.WithDBSCAN
-
- numSplits() - Method in class moa.classifiers.core.AttributeSplitSuggestion
-
- numSubsetsGreaterThanFrac(double[][], double) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- numTuples - Variable in class moa.core.GreenwaldKhannaQuantileSummary
-
- numTuplesOption - Variable in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- numValsPerNominalOption - Variable in class moa.streams.generators.RandomTreeGenerator
-
- numValues() - Method in class moa.core.DoubleVector
-
- nUsers - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- p - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
-
Reference to original point
- pack(byte[]) - Static method in class moa.clusterers.streamkm.MTRandom
-
This simply utility method can be used in cases where a byte
array of seed data is to be used to repeatedly re-seed the
random number sequence.
- pageHinckleyAlphaOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- PageHinckleyAlphaOption - Variable in class moa.classifiers.trees.FIMTDD
-
- PageHinckleyAlphaOption - Variable in class moa.classifiers.trees.ORTO
-
- pageHinckleyTest - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- PageHinckleyTest(double, double) - Method in class moa.classifiers.trees.FIMTDD.Node
-
Check to see if the tree needs updating
- PageHinckleyTest(double, double) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
Check to see if the tree needs updating
- pageHinckleyThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- PageHinckleyThresholdOption - Variable in class moa.classifiers.trees.FIMTDD
-
- PageHinckleyThresholdOption - Variable in class moa.classifiers.trees.ORTO
-
- PageHinkleyDM - Class in moa.classifiers.core.driftdetection
-
Drift detection method based in Page Hinkley Test.
- PageHinkleyDM() - Constructor for class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- PageHinkleyFading - Class in moa.classifiers.rules.driftdetection
-
- PageHinkleyFading(double, double) - Constructor for class moa.classifiers.rules.driftdetection.PageHinkleyFading
-
- PageHinkleyTest - Class in moa.classifiers.rules.driftdetection
-
- PageHinkleyTest(double, double) - Constructor for class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- paint(Graphics) - Method in class moa.gui.LineGraphViewPanel.PlotPanel
-
- paintComponent(Graphics) - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
-
- paintComponent(Graphics) - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
-
- paintComponent(Graphics) - Method in class moa.gui.visualization.ClusterPanel
-
- paintComponent(Graphics) - Method in class moa.gui.visualization.GraphAxes
-
- paintComponent(Graphics) - Method in class moa.gui.visualization.GraphCanvas
-
- paintComponent(Graphics) - Method in class moa.gui.visualization.GraphCurve
-
- paintComponent(Graphics) - Method in class moa.gui.visualization.OutlierPanel
-
- paintComponent(Graphics) - Method in class moa.gui.visualization.PointPanel
-
- paintValue(Graphics, Rectangle) - Method in class weka.gui.MOAClassOptionEditor
-
Paints a representation of the current Object.
- Pair<T> - Class in moa.clusterers.outliers.utils.mtree.utils
-
A pair of objects of the same type.
- Pair() - Constructor for class moa.clusterers.outliers.utils.mtree.utils.Pair
-
Creates a pair of null
objects.
- Pair(T, T) - Constructor for class moa.clusterers.outliers.utils.mtree.utils.Pair
-
Creates a pair with the objects specified in the arguments.
- Pair<T extends Comparable<T>,U extends Comparable<U>> - Class in moa.recommender.rc.utils
-
- Pair(T, U) - Constructor for class moa.recommender.rc.utils.Pair
-
- panel_size - Variable in class moa.gui.visualization.ClusterPanel
-
- panel_size - Variable in class moa.gui.visualization.OutlierPanel
-
- panel_size - Variable in class moa.gui.visualization.PointPanel
-
- parameterOption - Variable in class moa.clusterers.WekaClusteringAlgorithm
-
- parent - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- parent - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
-
- parent - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- parent - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
-
- parent - Variable in class moa.classifiers.trees.ORTO.Node
-
- parentBranch - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
-
- parentBranch - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
-
- partition(Instances, int[], int, int, int) - Static method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
-
Partitions the instances around a pivot.
- partition(int, int[], int, int) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
-
Partitions the instances around a pivot.
- partition(double[], double[], int, int) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Partitions the instances around a pivot.
- PartitionFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
-
An object with partitions a set of data into two sub-sets.
- PartitionFunctions - Class in moa.clusterers.outliers.utils.mtree
-
- PartitionFunctions.BalancedPartition<DATA> - Class in moa.clusterers.outliers.utils.mtree
-
A
partition function that tries to
distribute the data objects equally between the promoted data objects,
associating to each promoted data objects the nearest data objects.
- PartitionFunctions.BalancedPartition() - Constructor for class moa.clusterers.outliers.utils.mtree.PartitionFunctions.BalancedPartition
-
- partitions - Variable in class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
-
A pair of partitions corresponding to the promoted
data
objects.
- pause() - Static method in class moa.gui.visualization.RunOutlierVisualizer
-
- pause() - Static method in class moa.gui.visualization.RunVisualizer
-
- pauseFlag - Variable in class moa.tasks.StandardTaskMonitor
-
- pauseSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- pauseSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
-
- pauseSelectedTasks() - Method in class moa.gui.TaskManagerPanel
-
- pauseTask() - Method in class moa.tasks.TaskThread
-
- pauseTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- pauseTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
-
- pauseTaskButton - Variable in class moa.gui.TaskManagerPanel
-
- peek() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
peeks at the first element.
- penaltyFactorOption - Variable in class moa.classifiers.meta.LimAttClassifier
-
- Perceptron - Class in moa.classifiers.functions
-
Single perceptron classifier.
- Perceptron() - Constructor for class moa.classifiers.functions.Perceptron
-
- perceptron - Variable in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- Perceptron - Class in moa.classifiers.rules.functions
-
- Perceptron() - Constructor for class moa.classifiers.rules.functions.Perceptron
-
- Perceptron(Perceptron) - Constructor for class moa.classifiers.rules.functions.Perceptron
-
- perceptronattributeStatistics - Variable in class moa.classifiers.rules.functions.Perceptron
-
- perceptronInstancesSeen - Variable in class moa.classifiers.rules.functions.Perceptron
-
- perceptronsumY - Variable in class moa.classifiers.rules.functions.Perceptron
-
- perceptronYSeen - Variable in class moa.classifiers.rules.functions.Perceptron
-
- period - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- perturbValue(double, double, double) - Method in class moa.streams.generators.AgrawalGenerator
-
- perturbValue(double, double, double, double) - Method in class moa.streams.generators.AgrawalGenerator
-
- peturbFractionOption - Variable in class moa.streams.generators.AgrawalGenerator
-
- phinstancesSeen - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- PHmin - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- PHmT - Variable in class moa.classifiers.rules.RuleClassification
-
- PHMT - Variable in class moa.classifiers.rules.RuleClassification
-
- PHmT - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- PHMT - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- PHmT - Variable in class moa.classifiers.trees.ORTO.InnerNode
-
- PHMT - Variable in class moa.classifiers.trees.ORTO.InnerNode
-
- PHsum - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- pID - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
-
point ID
- pineg - Variable in class moa.classifiers.meta.OCBoost
-
- pipos - Variable in class moa.classifiers.meta.OCBoost
-
- Plot - Class in moa.tasks
-
A task allowing to create and plot gnuplot scripts.
- Plot() - Constructor for class moa.tasks.Plot
-
- Plot.LegendLocation - Enum in moa.tasks
-
Location of the legend on the plot.
- Plot.LegendType - Enum in moa.tasks
-
Type of legend.
- Plot.PlotStyle - Enum in moa.tasks
-
- Plot.Terminal - Enum in moa.tasks
-
Plot output terminal.
- plotLines - Variable in class moa.gui.LineGraphViewPanel
-
- plotOutputOption - Variable in class moa.tasks.Plot
-
FileOption for selecting the plot output file.
- plotStyleOption - Variable in class moa.tasks.Plot
-
Type of plot - dots, points, lines ets.
- PminOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- Point - Class in moa.clusterers.streamkm
-
- Point(int) - Constructor for class moa.clusterers.streamkm.Point
-
- Point(Instance, int) - Constructor for class moa.clusterers.streamkm.Point
-
- pointIntervalOption - Variable in class moa.tasks.Plot
-
Interval between plotted data points.
- PointPanel - Class in moa.gui.visualization
-
- PointPanel(DataPoint, StreamPanel, double, double) - Constructor for class moa.gui.visualization.PointPanel
-
Type 1: Possibly be decayed, colored by class label.
- PointPanel(DataPoint, StreamPanel, Color) - Constructor for class moa.gui.visualization.PointPanel
-
Type 2: Never be decayed, single color.
- poisson(double, Random) - Static method in class moa.core.MiscUtils
-
- pOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
-
- positionOffsetOption - Variable in class moa.clusterers.ClusterGenerator
-
- positionOption - Variable in class moa.streams.ConceptDriftRealStream
-
- positionOption - Variable in class moa.streams.ConceptDriftStream
-
- postProcessDistances(double[]) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Does post processing of the distances (if necessary) returned by
distance(distance(Instance first, Instance second, double cutOffValue).
- postProcessDistances(double[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
-
Does post processing of the distances (if necessary) returned by
distance(distance(Instance first, Instance second, double cutOffValue).
- postProcessDistances(double[]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Does nothing, derived classes may override it though.
- posWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
-
- posWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
-
- preciseThreadTimesAvailable - Static variable in class moa.core.TimingUtils
-
- Predicate - Interface in moa.classifiers.rules.core
-
- Predicates - Class in moa.classifiers.rules
-
- Predicates(double, double, double) - Constructor for class moa.classifiers.rules.Predicates
-
- predicateSet - Variable in class moa.classifiers.rules.RuleClassification
-
- prediction(Instance, int) - Method in class moa.classifiers.functions.Perceptron
-
- prediction(double[][], int) - Method in class moa.classifiers.meta.LimAttClassifier
-
- prediction(double[]) - Method in class moa.classifiers.rules.functions.Perceptron
-
- prediction(DoubleVector) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
Output the prediction made by this perceptron on the given instance
- prediction(Instance) - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
Output the prediction made by this perceptron on the given instance
- predictionFunction - Variable in class moa.classifiers.rules.core.Rule.Builder
-
- predictionFunction(int) - Method in class moa.classifiers.rules.core.Rule.Builder
-
- predictionFunction - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- predictionFunctionOption - Variable in class moa.classifiers.rules.AMRulesRegressor
-
- predictionFunctionOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- predictionOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- predictionPruning(double[][], int[], int) - Method in class moa.classifiers.meta.LimAttClassifier
-
- predictRating(Integer, Integer) - Method in class moa.recommender.predictor.BaselinePredictor
-
- predictRating(int, int) - Method in class moa.recommender.predictor.BaselinePredictor
-
- predictRating(Integer, Integer) - Method in class moa.recommender.predictor.BRISMFPredictor
-
- predictRating(int, int) - Method in class moa.recommender.predictor.BRISMFPredictor
-
- predictRating(int, int) - Method in interface moa.recommender.predictor.RatingPredictor
-
- predictRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
-
- predictRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- predictRating(float[], float[]) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- predictRating(int, int) - Method in interface moa.recommender.rc.predictor.RatingPredictor
-
- predictRatings(int, List<Integer>) - Method in class moa.recommender.predictor.BaselinePredictor
-
- predictRatings(int, List<Integer>) - Method in class moa.recommender.predictor.BRISMFPredictor
-
- predictRatings(int, List<Integer>) - Method in interface moa.recommender.predictor.RatingPredictor
-
- predictRatings(int, List<Integer>) - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
-
- predictRatings(int, List<Integer>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- predictRatings(int, List<Integer>) - Method in interface moa.recommender.rc.predictor.RatingPredictor
-
- preds - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- prepareClassOptions(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
-
Prepares the options of this class.
- prepareForUse() - Method in class moa.options.AbstractOptionHandler
-
- prepareForUse(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
-
- prepareForUse() - Method in interface moa.options.OptionHandler
-
This method prepares this object for use.
- prepareForUse(TaskMonitor, ObjectRepository) - Method in interface moa.options.OptionHandler
-
This method prepares this object for use.
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.AbstractClassifier
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.CusumDM
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.DDM
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EDDM
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.clusterers.AbstractClusterer
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
-
This method describes the implementation of how to prepare this object for use.
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.data.MemRecommenderData
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.JesterDataset
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.predictor.BaselinePredictor
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.predictor.BRISMFPredictor
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ArffFileStream
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.clustering.FileStream
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ConceptDriftRealStream
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ConceptDriftStream
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.FilteredStream
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.filters.AbstractStreamFilter
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.AgrawalGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.HyperplaneGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.LEDGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.LEDGeneratorDrift
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.RandomRBFGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.RandomTreeGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.SEAGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.STAGGERGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.WaveformGenerator
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.WaveformGeneratorDrift
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.MultiFilteredStream
-
- prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
-
- previewedThread - Variable in class moa.gui.PreviewPanel
-
- previewLabel - Variable in class moa.gui.PreviewPanel
-
- previewPanel - Variable in class moa.gui.ClassificationTabPanel
-
- previewPanel - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- previewPanel - Variable in class moa.gui.ConceptDriftTabPanel
-
- PreviewPanel - Class in moa.gui
-
This panel displays the running task preview text and buttons.
- PreviewPanel() - Constructor for class moa.gui.PreviewPanel
-
- PreviewPanel(PreviewPanel.TypePanel) - Constructor for class moa.gui.PreviewPanel
-
- PreviewPanel(PreviewPanel.TypePanel, CDTaskManagerPanel) - Constructor for class moa.gui.PreviewPanel
-
- previewPanel - Variable in class moa.gui.RegressionTabPanel
-
- previewPanel - Variable in class moa.gui.RegressionTaskManagerPanel
-
- previewPanel - Variable in class moa.gui.TaskLauncher
-
- previewPanel - Variable in class moa.gui.TaskManagerPanel
-
- PreviewPanel.TypePanel - Enum in moa.gui
-
- previousWeight - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
-
- previousWeight - Variable in class moa.classifiers.trees.ORTO.InnerNode
-
- Print(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- print(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
-
- print(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- Print_lt_cnt(ArrayList<Integer>) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
-
- printAnomaliesSupervised(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
-
- printAnomaliesUnsupervised(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
-
- PrintEventQueue() - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- PrintEventQueue() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- Printf(String, Object...) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- printf(String, Object...) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
-
- printf(String, Object...) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- PrintInstance(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- PrintISB() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- printList() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
Prints out the contents of the neighborlist.
- Println(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- println(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
-
- println(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- PrintMCSet(Set<MicroCluster>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- PrintNodeList(List<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- PrintNodeList(List<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- PrintNodeSet(Set<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- PrintNodeSet(Set<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- PrintNodeVector(Vector<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- PrintNodeVector(Vector<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- PrintOutliers() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- PrintPD() - Method in class moa.clusterers.outliers.MCOD.MCODBase
-
- PrintPrecNeighs() - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
-
- printRule() - Method in class moa.classifiers.rules.core.Rule
-
- PrintRuleSet() - Method in class moa.classifiers.rules.AbstractAMRules
-
- priors - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- priors_norm - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- prob - Variable in class moa.classifiers.lazy.kNNwithPAW
-
- prob - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
-
- probabilityDensity(double) - Method in class moa.core.GaussianEstimator
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
-
Gets the probability for an attribute value given a class
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
-
- probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
-
- probabilityThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- process(Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.ComposedSplitFunction
-
- process(Pair<DATA>, Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.PartitionFunction
-
Executes the partitioning.
- process(Pair<DATA>, Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.PartitionFunctions.BalancedPartition
-
Processes the balanced partition.
- process(Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.PromotionFunction
-
Chooses (promotes) a pair of objects according to some criteria that is
suitable for the application using the M-Tree.
- process(Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.PromotionFunctions.RandomPromotion
-
- process(Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.SplitFunction
-
Processes the splitting of a node.
- processChunk() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Processes a chunk of instances.
- processChunk() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Processes a chunk.
- processedInstances - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
Number of processed examples.
- processedInstances - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- processedInstances - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
Number of processed examples.
- processingSpeed - Variable in class moa.clusterers.denstream.WithDBSCAN
-
- processInstance(Instance, FIMTDD.Node, double, double, boolean, boolean) - Method in class moa.classifiers.trees.FIMTDD
-
- processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.Node
-
- processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.OptionNode
-
- processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.SplitNode
-
- processNewInstanceImpl(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.AbstractC.AbstractC
-
- ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
-
- ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
-
- ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.MCOD.MCOD
-
- ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
-
- progressAnimSequence - Static variable in class moa.DoTask
-
Array of characters to use to animate the progress of tasks running.
- promoted - Variable in class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
-
A pair of promoted data objects.
- PromotionFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
-
An object that chooses a pair from a set of data objects.
- PromotionFunctions - Class in moa.clusterers.outliers.utils.mtree
-
- PromotionFunctions.RandomPromotion<DATA> - Class in moa.clusterers.outliers.utils.mtree
-
- PromotionFunctions.RandomPromotion() - Constructor for class moa.clusterers.outliers.utils.mtree.PromotionFunctions.RandomPromotion
-
- PROPERTIES - Static variable in class moa.gui.GUIDefaults
-
Properties associated with the GUI options.
- PropertiesReader - Class in moa.core
-
Class implementing some properties reader utility methods.
- PropertiesReader() - Constructor for class moa.core.PropertiesReader
-
- PROPERTY_FILE - Static variable in class moa.gui.GUIDefaults
-
The name of the properties file.
- prunedAlternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- pruneOption - Variable in class moa.classifiers.meta.LimAttClassifier
-
- pruneOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- pruneToK(int) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
-
Prunes the list to contain the k nearest neighbors.
- pureBoostOption - Variable in class moa.classifiers.meta.OzaBoost
-
- pureBoostOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- purpose - Variable in class moa.options.AbstractOption
-
Text of the purpose of this option.
- put(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
adds the value to the heap.
- putBySubstitute(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
Puts an element by substituting it in place of
the top most element.
- putKthNearest(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
Stores kth nearest elements (if there are
more than one).
- R_MAX - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Index in ranges for MAX.
- R_MIN - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Index in ranges for MIN.
- R_WIDTH - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Index in ranges for WIDTH.
- radius() - Method in class moa.cluster.Miniball
-
Return the Radius of the miniball
- radiusDecreaseOption - Variable in class moa.clusterers.ClusterGenerator
-
- radiusFactor - Variable in class moa.cluster.CFCluster
-
- radiusIncreaseOption - Variable in class moa.clusterers.ClusterGenerator
-
- radiusOption - Variable in class moa.clusterers.outliers.AbstractC.AbstractC
-
- radiusOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
-
- radiusOption - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM
-
- radiusOption - Variable in class moa.clusterers.outliers.MCOD.MCOD
-
- radiusOption - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
-
- random - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- random - Variable in class moa.streams.ConceptDriftRealStream
-
- random - Variable in class moa.streams.ConceptDriftStream
-
- random - Variable in class moa.streams.filters.AddNoiseFilter
-
- RandomHoeffdingTree - Class in moa.classifiers.trees
-
Random decision trees for data streams.
- RandomHoeffdingTree() - Constructor for class moa.classifiers.trees.RandomHoeffdingTree
-
- RandomHoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
-
- RandomHoeffdingTree.LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
-
- RandomHoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
-
- RandomHoeffdingTree.LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
-
- RandomHoeffdingTree.RandomLearningNode - Class in moa.classifiers.trees
-
- RandomHoeffdingTree.RandomLearningNode(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
-
- RandomRBFGenerator - Class in moa.streams.generators
-
Stream generator for a random radial basis function stream.
- RandomRBFGenerator() - Constructor for class moa.streams.generators.RandomRBFGenerator
-
- RandomRBFGenerator.Centroid - Class in moa.streams.generators
-
- RandomRBFGenerator.Centroid() - Constructor for class moa.streams.generators.RandomRBFGenerator.Centroid
-
- RandomRBFGeneratorDrift - Class in moa.streams.generators
-
Stream generator for a random radial basis function stream with drift.
- RandomRBFGeneratorDrift() - Constructor for class moa.streams.generators.RandomRBFGeneratorDrift
-
- RandomRBFGeneratorEvents - Class in moa.streams.clustering
-
- RandomRBFGeneratorEvents() - Constructor for class moa.streams.clustering.RandomRBFGeneratorEvents
-
- RandomRules - Class in moa.classifiers.meta
-
- RandomRules() - Constructor for class moa.classifiers.meta.RandomRules
-
- randomSample(Collection<T>, int) - Static method in class moa.clusterers.outliers.utils.mtree.utils.Utils
-
Randomly chooses elements from the collection.
- randomSeed - Variable in class moa.classifiers.AbstractClassifier
-
Random seed used in randomizable learners
- randomSeed - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
-
- randomSeed - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
-
- randomSeed - Variable in class moa.clusterers.AbstractClusterer
-
- randomSeedOption - Variable in class moa.classifiers.AbstractClassifier
-
Option for randomizable learners to change the random seed
- randomSeedOption - Variable in class moa.clusterers.AbstractClusterer
-
- randomSeedOption - Variable in class moa.clusterers.CobWeb
-
- randomSeedOption - Variable in class moa.clusterers.streamkm.StreamKM
-
- randomSeedOption - Variable in class moa.streams.ConceptDriftRealStream
-
- randomSeedOption - Variable in class moa.streams.ConceptDriftStream
-
- randomSeedOption - Variable in class moa.streams.filters.AddNoiseFilter
-
- randomSeedOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- RandomTreeGenerator - Class in moa.streams.generators
-
Stream generator for a stream based on a randomly generated tree..
- RandomTreeGenerator() - Constructor for class moa.streams.generators.RandomTreeGenerator
-
- RandomTreeGenerator.Node - Class in moa.streams.generators
-
- RandomTreeGenerator.Node() - Constructor for class moa.streams.generators.RandomTreeGenerator.Node
-
- RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
-
- RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
-
- RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
-
- RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
-
- rangesSet() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Check if ranges are set.
- Rating - Class in moa.recommender.rc.utils
-
- Rating(int, int, double) - Constructor for class moa.recommender.rc.utils.Rating
-
- rating - Variable in class moa.recommender.rc.utils.Rating
-
- ratingIterator() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- ratingIterator() - Method in interface moa.recommender.rc.data.RecommenderData
-
- RatingPredictor - Interface in moa.recommender.predictor
-
Rating predicting algorithm.
- RatingPredictor - Interface in moa.recommender.rc.predictor
-
- ratingPredictorOption - Variable in class moa.tasks.EvaluateOnlineRecommender
-
- ratingsItem - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- ratingsUser - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- read() - Method in class moa.core.InputStreamProgressMonitor
-
- read(byte[]) - Method in class moa.core.InputStreamProgressMonitor
-
- read(byte[], int, int) - Method in class moa.core.InputStreamProgressMonitor
-
- readFromFile(File) - Static method in class moa.core.SerializeUtils
-
- readInstance(Reader) - Method in class moa.core.InstancesHeader
-
- readMinMaxDiffValues(HashSet<Integer>) - Method in class moa.streams.clustering.FileStream
-
- readNextInstanceFromFile() - Method in class moa.streams.ArffFileStream
-
- readNextInstanceFromFile() - Method in class moa.streams.clustering.FileStream
-
- readProperties(String) - Static method in class moa.core.PropertiesReader
-
Reads properties that inherit from three locations.
- rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
-
Re-arranges the indices array so that in the portion of the array
belonging to the node to be split, the points <= to the splitVal
are on the left of the portion and those > the splitVal are on the right.
- rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
-
Re-arranges the indices array such that the points <= to the splitVal
are on the left of the array and those > the splitVal are on the right.
- rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
-
Re-arranges the indices array such that the points <= to the splitVal
are on the left of the array and those > the splitVal are on the right.
- recalculateData() - Method in class moa.clusterers.clustree.Entry
-
This functions reads every entry in the child node and calculates the
corresponding data Kernel
.
- recentChunk - Variable in class moa.classifiers.meta.ADACC
-
Last chunk of data of size (tau_size) to compute the stability index
- RecommenderData - Interface in moa.recommender.data
-
- RecommenderData - Interface in moa.recommender.rc.data
-
- RedirectToDisplay() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- RedirectToFile(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- RedirectToFile() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
-
- redraw() - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- redraw() - Method in class moa.gui.visualization.RunVisualizer
-
- redrawOnResize() - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- RedrawPointLayer() - Method in class moa.gui.visualization.StreamOutlierPanel
-
- refineOwners(KDTreeNode, Instances, int[]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Refines the ownerlist.
- refresh() - Method in class moa.gui.PreviewPanel
-
- refreshButton - Variable in class moa.gui.PreviewPanel
-
- RegressionAccuracy - Class in moa.evaluation
-
- RegressionAccuracy() - Constructor for class moa.evaluation.RegressionAccuracy
-
- RegressionMainTask - Class in moa.tasks
-
- RegressionMainTask() - Constructor for class moa.tasks.RegressionMainTask
-
- RegressionPerformanceEvaluator - Interface in moa.evaluation
-
Interface implemented by learner evaluators to monitor
the results of the regression learning process.
- RegressionTabPanel - Class in moa.gui
-
This panel allows the user to select and configure a task, and run it.
- RegressionTabPanel() - Constructor for class moa.gui.RegressionTabPanel
-
- RegressionTaskManagerPanel - Class in moa.gui
-
This panel displays the running tasks.
- RegressionTaskManagerPanel() - Constructor for class moa.gui.RegressionTaskManagerPanel
-
- RegressionTaskManagerPanel.ProgressCellRenderer - Class in moa.gui
-
- RegressionTaskManagerPanel.ProgressCellRenderer() - Constructor for class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
-
- RegressionTaskManagerPanel.TaskTableModel - Class in moa.gui
-
- RegressionTaskManagerPanel.TaskTableModel() - Constructor for class moa.gui.RegressionTaskManagerPanel.TaskTableModel
-
- regressionTreeOption - Variable in class moa.classifiers.trees.FIMTDD
-
- Regressor - Interface in moa.classifiers
-
Regressor interface for incremental regression models.
- remove(int) - Method in class moa.cluster.Clustering
-
remove a cluster from the clustering
- remove(CFCluster) - Method in class moa.clusterers.macro.NonConvexCluster
-
- Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
-
- Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
-
- Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
-
- Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
-
- remove(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
-
Removes a data object from the M-Tree.
- remove(int) - Method in class moa.core.AutoExpandVector
-
- remove(Object) - Method in class moa.core.AutoExpandVector
-
- remove() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
-
- remove() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
-
- remove(int) - Method in class moa.recommender.rc.utils.DenseVector
-
- remove(int) - Method in class moa.recommender.rc.utils.SparseVector
-
- remove() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
-
- remove(int) - Method in class moa.recommender.rc.utils.Vector
-
- removeAllOptions() - Method in class moa.options.Options
-
- removeAttributesOption - Variable in class moa.streams.clustering.FileStream
-
- removeBadSplits(SplitCriterion, double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
-
A method to remove all nodes in the E-BST in which it and all it's
children represent 'bad' split points
- removeChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionEditComponent
-
Removes the listener from the internal set of listeners.
- removeChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionWithNamesEditComponent
-
Removes the listener from the internal set of listeners.
- removeClusterChangeListener(ClusterEventListener) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
Remove a listener
- removeExcessTrees() - Method in class moa.classifiers.trees.ORTO
-
- RemoveExpiredOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- removeItem(int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- removeItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- removeItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- RemoveNode(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
-
- removeObject(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- removeOption(String) - Method in class moa.options.Options
-
- removeOption(Option) - Method in class moa.options.Options
-
- RemoveOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- removePoorAttsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- removePoorAttsOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- removePoorAttsOption - Variable in class moa.classifiers.trees.ORTO
-
- removePoorestModelBytes() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Removes the poorest classifier from the model, thus decreasing the models
size.
- removePoorestModelBytes() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- RemovePrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- RemovePrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
-
- removeRange(int, int) - Method in class moa.core.AutoExpandVector
-
- removeRating(int, int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- removeRating(int, int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- removeRating(int, int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- removeTaskCompletionListener(TaskCompletionListener) - Method in class moa.tasks.TaskThread
-
- removeUser(int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- removeUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- removeUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
-
- renderAlgoPanel() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- renderAlgoPanel() - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- renderAWTBox(Graphics, int, int, int, int) - Method in interface moa.gui.AWTRenderer
-
- repaint() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- repaint() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- repaintOutliers() - Method in class moa.gui.visualization.StreamOutlierPanel
-
- ReplacingMissingValuesFilter - Class in moa.streams.filters
-
Replaces the missing values with another value according to the selected
strategy.
- ReplacingMissingValuesFilter() - Constructor for class moa.streams.filters.ReplacingMissingValuesFilter
-
- ReplacingMissingValuesFilter.MapUtil - Class in moa.streams.filters
-
- ReplacingMissingValuesFilter.MapUtil() - Constructor for class moa.streams.filters.ReplacingMissingValuesFilter.MapUtil
-
- repository - Variable in class moa.tasks.TaskThread
-
- requestCancel() - Method in class moa.tasks.NullMonitor
-
- requestCancel() - Method in class moa.tasks.StandardTaskMonitor
-
- requestCancel() - Method in interface moa.tasks.TaskMonitor
-
Requests the task monitored to cancel.
- requestPause() - Method in class moa.tasks.NullMonitor
-
- requestPause() - Method in class moa.tasks.StandardTaskMonitor
-
- requestPause() - Method in interface moa.tasks.TaskMonitor
-
Requests the task monitored to pause.
- requestResultPreview() - Method in class moa.tasks.NullMonitor
-
- requestResultPreview(ResultPreviewListener) - Method in class moa.tasks.NullMonitor
-
- requestResultPreview() - Method in class moa.tasks.StandardTaskMonitor
-
- requestResultPreview(ResultPreviewListener) - Method in class moa.tasks.StandardTaskMonitor
-
- requestResultPreview() - Method in interface moa.tasks.TaskMonitor
-
Requests to preview the task result.
- requestResultPreview(ResultPreviewListener) - Method in interface moa.tasks.TaskMonitor
-
Requests to preview the task result.
- requestResume() - Method in class moa.tasks.NullMonitor
-
- requestResume() - Method in class moa.tasks.StandardTaskMonitor
-
- requestResume() - Method in interface moa.tasks.TaskMonitor
-
Requests the task monitored to resume.
- RequiredOptionNotSpecifiedException - Exception in moa.options
-
- RequiredOptionNotSpecifiedException() - Constructor for exception moa.options.RequiredOptionNotSpecifiedException
-
- requiredType - Variable in class moa.options.AbstractClassOption
-
The class type
- reset - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
-
- reset - Variable in class moa.classifiers.functions.Perceptron
-
- reset() - Method in class moa.classifiers.functions.SGD
-
Reset the classifier.
- reset() - Method in class moa.classifiers.functions.SGDMultiClass
-
Reset the classifier.
- reset() - Method in class moa.classifiers.functions.SPegasos
-
Reset the classifier.
- reset() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
-
- reset - Variable in class moa.classifiers.meta.LimAttClassifier
-
- reset() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyFading
-
- reset() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- reset() - Method in class moa.classifiers.rules.functions.Perceptron
-
- reset(double, long) - Method in class moa.classifiers.rules.functions.TargetMean
-
- reset - Variable in class moa.classifiers.rules.RuleClassification
-
- reset - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- reset - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
- reset() - Method in class moa.core.InputStreamProgressMonitor
-
- reset() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- reset(int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- reset() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
-
- reset() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
-
- reset() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- reset() - Method in interface moa.evaluation.ClassificationPerformanceEvaluator
-
Resets this evaluator.
- reset() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
-
- reset() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
-
- reset() - Method in interface moa.evaluation.LearningPerformanceEvaluator
-
- reset() - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
-
- reset(int) - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
-
- reset() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- reset(int) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- reset() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- reset(int) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- reset() - Method in interface moa.recommender.dataset.Dataset
-
- reset() - Method in class moa.recommender.dataset.impl.FlixsterDataset
-
- reset() - Method in class moa.recommender.dataset.impl.JesterDataset
-
- reset() - Method in class moa.recommender.dataset.impl.MovielensDataset
-
- resetButton - Variable in class moa.gui.OptionsConfigurationPanel
-
- resetChange() - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- resetError() - Method in class moa.classifiers.rules.functions.Perceptron
-
- resetError() - Method in class moa.classifiers.rules.functions.TargetMean
-
- resetFF() - Method in class moa.classifiers.trees.ORTO.OptionNode
-
- resetLearning() - Method in class moa.classifiers.AbstractClassifier
-
- resetLearning() - Method in interface moa.classifiers.Classifier
-
Resets this classifier.
- resetLearning() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
-
Resets this change detector.
- resetLearning() - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
-
- resetLearning() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
-
Resets this change detector.
- resetLearning() - Method in class moa.classifiers.core.driftdetection.CusumDM
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.DDM
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.EDDM
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- resetLearning() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
-
- resetLearning() - Method in class moa.clusterers.AbstractClusterer
-
- resetLearning() - Method in interface moa.clusterers.Clusterer
-
- resetLearning() - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
-
- resetLearningImpl() - Method in class moa.classifiers.AbstractClassifier
-
Resets this classifier.
- resetLearningImpl() - Method in class moa.classifiers.active.ActiveClassifier
-
- resetLearningImpl() - Method in class moa.classifiers.bayes.NaiveBayes
-
- resetLearningImpl() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
-
- resetLearningImpl() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
-
- resetLearningImpl() - Method in class moa.classifiers.functions.MajorityClass
-
- resetLearningImpl() - Method in class moa.classifiers.functions.NoChange
-
- resetLearningImpl() - Method in class moa.classifiers.functions.Perceptron
-
- resetLearningImpl() - Method in class moa.classifiers.functions.SGD
-
- resetLearningImpl() - Method in class moa.classifiers.functions.SGDMultiClass
-
- resetLearningImpl() - Method in class moa.classifiers.functions.SPegasos
-
- resetLearningImpl() - Method in class moa.classifiers.lazy.kNN
-
- resetLearningImpl() - Method in class moa.classifiers.lazy.kNNwithPAW
-
- resetLearningImpl() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
-
- resetLearningImpl() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
-
- resetLearningImpl() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- resetLearningImpl() - Method in class moa.classifiers.meta.DACC
-
- resetLearningImpl() - Method in class moa.classifiers.meta.LeveragingBag
-
- resetLearningImpl() - Method in class moa.classifiers.meta.LimAttClassifier
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OCBoost
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OnlineSmoothBoost
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OzaBag
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OzaBagAdwin
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OzaBagASHT
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OzaBoost
-
- resetLearningImpl() - Method in class moa.classifiers.meta.OzaBoostAdwin
-
- resetLearningImpl() - Method in class moa.classifiers.meta.RandomRules
-
- resetLearningImpl() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
-
- resetLearningImpl() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
-
- resetLearningImpl() - Method in class moa.classifiers.meta.WEKAClassifier
-
- resetLearningImpl() - Method in class moa.classifiers.multilabel.MajorityLabelset
-
- resetLearningImpl() - Method in class moa.classifiers.multilabel.meta.MLOzaBag
-
- resetLearningImpl() - Method in class moa.classifiers.rules.AbstractAMRules
-
- resetLearningImpl() - Method in class moa.classifiers.rules.AMRulesRegressor
-
This method initializes and resets the algorithm.
- resetLearningImpl() - Method in class moa.classifiers.rules.functions.FadingTargetMean
-
- resetLearningImpl() - Method in class moa.classifiers.rules.functions.Perceptron
-
A method to reset the model
- resetLearningImpl() - Method in class moa.classifiers.rules.functions.TargetMean
-
- resetLearningImpl() - Method in class moa.classifiers.rules.RuleClassifier
-
- resetLearningImpl() - Method in class moa.classifiers.trees.ASHoeffdingTree
-
- resetLearningImpl() - Method in class moa.classifiers.trees.DecisionStump
-
- resetLearningImpl() - Method in class moa.classifiers.trees.FIMTDD
-
- resetLearningImpl() - Method in class moa.classifiers.trees.HoeffdingOptionTree
-
- resetLearningImpl() - Method in class moa.classifiers.trees.HoeffdingTree
-
- resetLearningImpl() - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
A method to reset the model
- resetLearningImpl() - Method in class moa.classifiers.trees.ORTO
-
- resetLearningImpl() - Method in class moa.clusterers.AbstractClusterer
-
- resetLearningImpl() - Method in class moa.clusterers.ClusterGenerator
-
- resetLearningImpl() - Method in class moa.clusterers.clustream.Clustream
-
- resetLearningImpl() - Method in class moa.clusterers.clustream.WithKmeans
-
- resetLearningImpl() - Method in class moa.clusterers.clustree.ClusTree
-
- resetLearningImpl() - Method in class moa.clusterers.CobWeb
-
- resetLearningImpl() - Method in class moa.clusterers.denstream.WithDBSCAN
-
- resetLearningImpl() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
-
- resetLearningImpl() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- resetLearningImpl() - Method in class moa.clusterers.streamkm.StreamKM
-
- resetLearningImpl() - Method in class moa.clusterers.WekaClusteringAlgorithm
-
- resetLearningImpl() - Method in class moa.learners.ChangeDetectorLearner
-
- resetToDefault() - Method in class moa.options.AbstractOption
-
- resetToDefault() - Method in interface moa.options.Option
-
Resets this option to the default value
- resetToDefaults() - Method in class moa.gui.OptionsConfigurationPanel
-
- resetToDefaults() - Method in class moa.options.Options
-
- resetTree - Variable in class moa.classifiers.trees.ASHoeffdingTree
-
- resetTreesOption - Variable in class moa.classifiers.meta.OzaBagASHT
-
- resizeTree(HoeffdingTree.Node, int) - Method in class moa.classifiers.trees.ASHoeffdingTree
-
- restart() - Method in class moa.streams.ArffFileStream
-
- restart() - Method in class moa.streams.CachedInstancesStream
-
- restart() - Method in class moa.streams.clustering.FileStream
-
- restart() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- restart() - Method in class moa.streams.ConceptDriftRealStream
-
- restart() - Method in class moa.streams.ConceptDriftStream
-
- restart() - Method in class moa.streams.FilteredStream
-
- restart() - Method in class moa.streams.filters.AbstractStreamFilter
-
- restart() - Method in class moa.streams.generators.AgrawalGenerator
-
- restart() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- restart() - Method in class moa.streams.generators.HyperplaneGenerator
-
- restart() - Method in class moa.streams.generators.LEDGenerator
-
- restart() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- restart() - Method in class moa.streams.generators.RandomRBFGenerator
-
- restart() - Method in class moa.streams.generators.RandomTreeGenerator
-
- restart() - Method in class moa.streams.generators.SEAGenerator
-
- restart() - Method in class moa.streams.generators.STAGGERGenerator
-
- restart() - Method in class moa.streams.generators.WaveformGenerator
-
- restart() - Method in interface moa.streams.InstanceStream
-
Restarts this stream.
- restart() - Method in class moa.streams.MultiFilteredStream
-
- restartChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.Node
-
- restartChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- restartImpl() - Method in class moa.streams.filters.AbstractStreamFilter
-
Restarts this filter.
- restartImpl() - Method in class moa.streams.filters.AddNoiseFilter
-
- restartImpl() - Method in class moa.streams.filters.CacheFilter
-
- restartImpl() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
-
- resultingClassDistributionFromSplit(int) - Method in class moa.classifiers.core.AttributeSplitSuggestion
-
- resultingClassDistributions - Variable in class moa.classifiers.core.AttributeSplitSuggestion
-
- resultKnownForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
-
Gets whether the number of the branch for an instance is known.
- resultPreviewer - Variable in class moa.tasks.StandardTaskMonitor
-
- ResultPreviewListener - Interface in moa.tasks
-
Interface implemented by classes that preview results
on the Graphical User Interface
- resultPreviewRequested() - Method in class moa.tasks.NullMonitor
-
- resultPreviewRequested - Variable in class moa.tasks.StandardTaskMonitor
-
- resultPreviewRequested() - Method in class moa.tasks.StandardTaskMonitor
-
- resultPreviewRequested() - Method in interface moa.tasks.TaskMonitor
-
Gets whether there is a request for preview the task result.
- resume() - Static method in class moa.gui.visualization.RunOutlierVisualizer
-
- resume() - Static method in class moa.gui.visualization.RunVisualizer
-
- resumeSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- resumeSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
-
- resumeSelectedTasks() - Method in class moa.gui.TaskManagerPanel
-
- resumeTask() - Method in class moa.tasks.TaskThread
-
- resumeTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- resumeTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
-
- resumeTaskButton - Variable in class moa.gui.TaskManagerPanel
-
- revalidate() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
-
- revalidate() - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
-
- revalidate() - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
-
- rFactor - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- rFactorOption - Variable in class moa.recommender.predictor.BRISMFPredictor
-
- right - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
-
- right - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
-
- right - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
-
- rightStatistics - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
-
- Rmc - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
-
- rnd - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- root - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
-
- root - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
-
- root - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
-
- root - Variable in class moa.clusterers.clustree.ClusTree
-
The root node of the tree.
- root - Variable in class moa.clusterers.outliers.utils.mtree.MTree
-
- root1 - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
-
- round(double) - Method in class moa.classifiers.rules.RuleClassifier
-
- round(double) - Method in class moa.gui.TaskTextViewerPanel
-
- rowKappa - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
-
- rowKappa - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
-
- rp - Variable in class moa.recommender.predictor.BaselinePredictor
-
- rp - Variable in class moa.recommender.predictor.BRISMFPredictor
-
- Rule - Class in moa.classifiers.rules.core
-
- Rule(Rule.Builder) - Constructor for class moa.classifiers.rules.core.Rule
-
- Rule.Builder - Class in moa.classifiers.rules.core
-
- Rule.Builder() - Constructor for class moa.classifiers.rules.core.Rule.Builder
-
- RuleActiveLearningNode - Class in moa.classifiers.rules.core
-
A modified ActiveLearningNode that uses a Perceptron as the leaf node model,
and ensures that the class values sent to the attribute observers are not
truncated to ints if regression is being performed
- RuleActiveLearningNode(double[]) - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
-
Create a new RuleActiveLearningNode
- RuleActiveLearningNode() - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
-
- RuleActiveLearningNode(Rule.Builder) - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
-
- RuleActiveRegressionNode - Class in moa.classifiers.rules.core
-
A modified ActiveLearningNode that uses a Perceptron as the leaf node model,
and ensures that the class values sent to the attribute observers are not
truncated to ints if regression is being performed
- RuleActiveRegressionNode(double[]) - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- RuleActiveRegressionNode() - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- RuleActiveRegressionNode(Rule.Builder) - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- ruleAnomaliesIndex - Variable in class moa.classifiers.rules.RuleClassifier
-
- ruleAnomaliesIndexSupervised - Variable in class moa.classifiers.rules.RuleClassifier
-
- ruleAttribAnomalyStatistics - Variable in class moa.classifiers.rules.RuleClassifier
-
- ruleAttribAnomalyStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassifier
-
- RuleClassification - Class in moa.classifiers.rules
-
- RuleClassification(RuleClassification) - Constructor for class moa.classifiers.rules.RuleClassification
-
- RuleClassification() - Constructor for class moa.classifiers.rules.RuleClassification
-
- RuleClassifier - Class in moa.classifiers.rules
-
This classifier learn ordered and unordered rule set from data stream.
- RuleClassifier() - Constructor for class moa.classifiers.rules.RuleClassifier
-
- RuleClassifierNBayes - Class in moa.classifiers.rules
-
This classifier learn ordered and unordered rule set from data stream with naive Bayes learners.
- RuleClassifierNBayes() - Constructor for class moa.classifiers.rules.RuleClassifierNBayes
-
- ruleClassIndex - Variable in class moa.classifiers.rules.RuleClassifier
-
- ruleEvaluate(Instance) - Method in class moa.classifiers.rules.RuleClassification
-
- ruleNumberID - Variable in class moa.classifiers.rules.AbstractAMRules
-
- ruleNumberID - Variable in class moa.classifiers.rules.core.Rule
-
- ruleSet - Variable in class moa.classifiers.rules.AbstractAMRules
-
- RuleSet - Class in moa.classifiers.rules.core
-
- RuleSet() - Constructor for class moa.classifiers.rules.core.RuleSet
-
- ruleSet - Variable in class moa.classifiers.rules.RuleClassifier
-
- ruleSetAnomalies - Variable in class moa.classifiers.rules.RuleClassifier
-
- ruleSetAnomaliesSupervised - Variable in class moa.classifiers.rules.RuleClassifier
-
- RuleSplitNode - Class in moa.classifiers.rules.nodes
-
A modified SplitNode method implementing the extra information
- RuleSplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.rules.nodes.RuleSplitNode
-
Create a new RuleSplitNode
- run() - Method in class moa.gui.BatchCmd
-
- run() - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- run() - Method in class moa.gui.visualization.RunVisualizer
-
- run() - Method in class moa.tasks.TaskThread
-
- runBatch(ClusteringStream, AbstractClusterer, int, int, String) - Static method in class moa.gui.BatchCmd
-
- runningTask - Variable in class moa.tasks.TaskThread
-
- RunOutlierVisualizer - Class in moa.gui.visualization
-
- RunOutlierVisualizer(OutlierVisualTab, OutlierSetupTab) - Constructor for class moa.gui.visualization.RunOutlierVisualizer
-
- RunStreamTasks - Class in moa.tasks
-
Task for running several experiments modifying values of parameters.
- RunStreamTasks() - Constructor for class moa.tasks.RunStreamTasks
-
- runTask(Task) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- runTask(Task) - Method in class moa.gui.RegressionTaskManagerPanel
-
- runTask(Task) - Method in class moa.gui.TaskManagerPanel
-
- runTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- runTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
-
- runTaskButton - Variable in class moa.gui.TaskManagerPanel
-
- RunTasks - Class in moa.tasks
-
Task for running several experiments modifying values of parameters.
- RunTasks() - Constructor for class moa.tasks.RunTasks
-
- runVisual() - Method in class moa.gui.visualization.RunVisualizer
-
- RunVisualizer - Class in moa.gui.visualization
-
- RunVisualizer(ClusteringVisualTab, ClusteringSetupTab) - Constructor for class moa.gui.visualization.RunVisualizer
-
- sammeOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- sample(Random) - Method in class moa.cluster.Cluster
-
Samples this cluster by returning a point from inside it.
- sample(Random) - Method in class moa.cluster.SphereCluster
-
Samples this cluster by returning a point from inside it.
- sampleFrequencyOption - Variable in class moa.classifiers.meta.WEKAClassifier
-
- sampleFrequencyOption - Variable in class moa.tasks.EvaluateConceptDrift
-
- sampleFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedChunks
-
Defines how often classifier parameters will be calculated.
- sampleFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- sampleFrequencyOption - Variable in class moa.tasks.EvaluateOnlineRecommender
-
- sampleFrequencyOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
-
- sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequential
-
- sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialRegression
-
- saveBestEntropy - Variable in class moa.classifiers.rules.RuleClassifier
-
- saveBestEntropyNominalAttrib - Variable in class moa.classifiers.rules.RuleClassifier
-
- saveBestGlobalEntropy - Variable in class moa.classifiers.rules.RuleClassifier
-
- saveBestValGlobalEntropy - Variable in class moa.classifiers.rules.RuleClassifier
-
- saveLogSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- saveLogSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
-
- saveLogSelectedTasks() - Method in class moa.gui.TaskManagerPanel
-
- saveTheBest - Variable in class moa.classifiers.rules.RuleClassifier
-
- scalarProduct(DoubleVector, DoubleVector) - Method in class moa.classifiers.trees.FIMTDD
-
- scaleValues(double) - Method in class moa.core.DoubleVector
-
- scaleXResolution(boolean) - Method in class moa.gui.visualization.GraphCanvas
-
- scaleYResolution(boolean) - Method in class moa.gui.visualization.GraphCanvas
-
- scms - Variable in class moa.classifiers.meta.OzaBoost
-
- scms - Variable in class moa.classifiers.meta.OzaBoostAdwin
-
- screenshot(String, boolean, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- screenshot(String, boolean, boolean) - Method in class moa.gui.visualization.StreamPanel
-
- scrollPane - Variable in class moa.gui.TaskTextViewerPanel
-
- scrollPane - Variable in class moa.gui.TextViewerPanel
-
- SDRSplitCriterion - Class in moa.classifiers.core.splitcriteria
-
- SDRSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.SDRSplitCriterion
-
- SDRSplitCriterionAMRules - Class in moa.classifiers.rules.core.splitcriteria
-
- SDRSplitCriterionAMRules() - Constructor for class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
-
- SEAGenerator - Class in moa.streams.generators
-
Stream generator for SEA concepts functions.
- SEAGenerator() - Constructor for class moa.streams.generators.SEAGenerator
-
- SEAGenerator.ClassFunction - Interface in moa.streams.generators
-
- searchForBestSplitOption(BinaryTreeNumericAttributeClassObserver.Node, AttributeSplitSuggestion, double[], double[], double[], boolean, SplitCriterion, double[], int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
-
- searchForBestSplitOption(BinaryTreeNumericAttributeClassObserverRegression.Node, AttributeSplitSuggestion, double[], double[], double[], boolean, SplitCriterion, double[], int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
-
- searchForBestSplitOption(FIMTDDNumericAttributeClassObserver.Node, AttributeSplitSuggestion, SplitCriterion, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
-
Implementation of the FindBestSplit algorithm from E.Ikonomovska et al.
- second - Variable in class moa.clusterers.outliers.utils.mtree.utils.Pair
-
The second object.
- secondarySplitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- secondLine - Variable in class moa.gui.TaskTextViewerPanel
-
- secondsToDHMSString(double) - Static method in class moa.core.StringUtils
-
- select(int, int[], int, int, int) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
-
Implements computation of the kth-smallest element according
to Manber's "Introduction to Algorithms".
- SemiSupervisedLearner - Interface in moa.classifiers
-
Learner interface for incremental semi supervised models.
- separatorChar - Variable in class moa.options.ListOption
-
- seqdrift - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
-
- seqDrift1 - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- SeqDrift1ChangeDetector - Class in moa.classifiers.core.driftdetection
-
SeqDrift1ChangeDetector.java.
- SeqDrift1ChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
-
- SeqDrift2ChangeDetector - Class in moa.classifiers.core.driftdetection
-
SeqDriftChangeDetector.java.
- SeqDrift2ChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
-
- SeqDrift2ChangeDetector.SeqDrift2 - Class in moa.classifiers.core.driftdetection
-
SeqDrift2 uses reservoir sampling to build a sequential change detection
model that uses statistically sound guarantees defined using Bernstein Bound
on false positive and false negative rates.
- SeqDrift2ChangeDetector.SeqDrift2(double, int) - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
-
SeqDrift change detector requires two parameters: significance level and
block size.
- SerializeUtils - Class in moa.core
-
Class implementing some serialize utility methods.
- SerializeUtils() - Constructor for class moa.core.SerializeUtils
-
- SerializeUtils.ByteCountingOutputStream - Class in moa.core
-
- SerializeUtils.ByteCountingOutputStream() - Constructor for class moa.core.SerializeUtils.ByteCountingOutputStream
-
- serialVersionUID - Static variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
-
- serialVersionUID - Static variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
-
- set(int, T) - Method in class moa.core.AutoExpandVector
-
- set() - Method in class moa.options.FlagOption
-
- set(int, double) - Method in class moa.recommender.rc.utils.DenseVector
-
- set(int, double) - Method in class moa.recommender.rc.utils.SparseVector
-
- set(int, double) - Method in class moa.recommender.rc.utils.Vector
-
- setActiveXDim(int) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setActiveXDim(int) - Method in class moa.gui.visualization.StreamPanel
-
- setActiveYDim(int) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setActiveYDim(int) - Method in class moa.gui.visualization.StreamPanel
-
- setAcuity(double) - Method in class moa.clusterers.CobWeb
-
set the acuity.
- setAdaptable(boolean) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- setAdaptable(boolean) - Method in class moa.classifiers.trees.ORTO.Node
-
- setAlgorithm0ValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- setAlgorithm0ValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- setAlgorithm1ValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- setAlgorithm1ValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- setAlternate(boolean) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- setAlternate(boolean) - Method in class moa.classifiers.trees.ORTO.Node
-
- setAlternateTree(ORTO.Node) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- setArrayLength(int) - Method in class moa.core.DoubleVector
-
- setAttributeIndices(String) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Sets the range of attributes to use in the calculation of the distance.
- setAttributeIndices(String) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Sets the range of attributes to use in the calculation of the distance.
- setAttributeValue(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
-
- setAttributeValue(double) - Method in class moa.classifiers.rules.Predicates
-
- setBestSuggestion(AttributeSplitSuggestion) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- setBuilder(Rule.Builder) - Method in class moa.classifiers.rules.core.Rule
-
- setCenter(double[]) - Method in class moa.cluster.SphereCluster
-
- setChild(int, FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
-
- setChild(int, HoeffdingOptionTree.Node) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- setChild(int, HoeffdingTree.Node) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- setChild(int, ORTO.Node) - Method in class moa.classifiers.trees.ORTO.InnerNode
-
- setChild(int, ORTO.Node) - Method in class moa.classifiers.trees.ORTO.Node
-
- setChild(int, ORTO.Node) - Method in class moa.classifiers.trees.ORTO.SplitNode
-
- setChild(Node) - Method in class moa.clusterers.clustree.Entry
-
Setter for the child in this entry.
- setChosenIndex(int) - Method in class moa.options.MultiChoiceOption
-
- setChosenLabel(String) - Method in class moa.options.MultiChoiceOption
-
- setClassifier(ClassOption) - Method in class weka.classifiers.meta.MOA
-
Sets the MOA classifier to use.
- setClock(int) - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- setClustered() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
-
- setClusterEventsList(ArrayList<ClusterEvent>) - Method in class moa.gui.visualization.GraphCanvas
-
- setClusterIDs(Clustering) - Method in class moa.clusterers.macro.AbstractMacroClusterer
-
- setClusteringSetupTab(ClusteringSetupTab) - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- setCurrentActivity(String, double) - Method in class moa.tasks.NullMonitor
-
- setCurrentActivity(String, double) - Method in class moa.tasks.StandardTaskMonitor
-
- setCurrentActivity(String, double) - Method in interface moa.tasks.TaskMonitor
-
Sets the description and the percentage done of the current activity.
- setCurrentActivityDescription(String) - Method in class moa.tasks.NullMonitor
-
- setCurrentActivityDescription(String) - Method in class moa.tasks.StandardTaskMonitor
-
- setCurrentActivityDescription(String) - Method in interface moa.tasks.TaskMonitor
-
Sets the description of the current activity.
- setCurrentActivityFractionComplete(double) - Method in class moa.tasks.NullMonitor
-
- setCurrentActivityFractionComplete(double) - Method in class moa.tasks.StandardTaskMonitor
-
- setCurrentActivityFractionComplete(double) - Method in interface moa.tasks.TaskMonitor
-
Sets the percentage done of the current activity
- setCurrentObject(Object) - Method in class moa.options.AbstractClassOption
-
Sets current object.
- setCutoff(double) - Method in class moa.clusterers.CobWeb
-
set the cutoff
- setDimensionComobBoxes(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- setDimensionComobBoxes(int) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- setDirection(double[]) - Method in class moa.gui.visualization.ClusterPanel
-
- setDirection(double[]) - Method in class moa.gui.visualization.OutlierPanel
-
- setDistanceFunction(DistanceFunction) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
sets the distance function to use for nearest neighbour search.
- setDistanceFunction(DistanceFunction) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
sets the distance function to use for nearest neighbour search.
- setDontNormalize(boolean) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Sets whether if the attribute values are to be normalized in distance
calculation.
- setEditState(String) - Method in class moa.gui.ClassOptionEditComponent
-
- setEditState(String) - Method in class moa.gui.ClassOptionWithNamesEditComponent
-
- setEditState(String) - Method in class moa.gui.FileOptionEditComponent
-
- setEditState(String) - Method in class moa.gui.FlagOptionEditComponent
-
- setEditState(String) - Method in class moa.gui.FloatOptionEditComponent
-
- setEditState(String) - Method in class moa.gui.IntOptionEditComponent
-
- setEditState(String) - Method in class moa.gui.MultiChoiceOptionEditComponent
-
- setEditState(String) - Method in interface moa.gui.OptionEditComponent
-
Sets the state of the component
- setEditState(String) - Method in class moa.gui.StringOptionEditComponent
-
- setEditState(String) - Method in class moa.gui.WEKAClassOptionEditComponent
-
- setEnabled(int, boolean) - Method in class moa.evaluation.MeasureCollection
-
- setEuclideanDistanceFunction(EuclideanDistance) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Sets the EuclideanDistance object to use for
splitting nodes.
- setEvents - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
-
- setEvents - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
-
- setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.ConceptDriftMainTask
-
- setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.RegressionMainTask
-
- setExamplesSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
-
- setFirst(T) - Method in class moa.recommender.rc.utils.Pair
-
- setGenerator(ClassOption) - Method in class weka.datagenerators.classifiers.classification.MOA
-
Sets the MOA stream generator to use.
- setGraph(String) - Method in class moa.gui.TaskTextViewerPanel
-
- setGraph(MeasureCollection, MeasureCollection, int, int) - Method in class moa.gui.visualization.GraphCanvas
-
- setGraph(MeasureCollection, MeasureCollection, int) - Method in class moa.gui.visualization.GraphCurve
-
- setGroundTruth(double) - Method in class moa.cluster.Cluster
-
- setGroundTruthLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
-
- setGroundTruthVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
-
- setHighlightedClusterPanel(ClusterPanel) - Method in class moa.gui.visualization.StreamPanel
-
- setHighlightedOutlierPanel(OutlierPanel) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setId(double) - Method in class moa.cluster.Cluster
-
- setId(int) - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
- setInput(double) - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- setInput(double, double) - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- setInput(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
-
This method can be used to directly interface with SeqDrift change
detector.
- setInputStream(InstanceStream) - Method in class moa.streams.filters.AbstractStreamFilter
-
- setInputStream(InstanceStream) - Method in interface moa.streams.filters.StreamFilter
-
Sets the input stream to the filter
- setInstanceList(int[]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Sets the master index array containing indices of the
training instances.
- setInstances(Instances) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Sets the instances.
- setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Builds the KDTree on the given set of instances.
- setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Sets the training instances on which the tree is (or is
to be) built.
- setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Sets the instances comprising the current neighbourhood.
- setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
-
Sets the instances.
- setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Sets the instances.
- setInstancesSeen(int) - Method in class moa.classifiers.rules.functions.Perceptron
-
- setInvertSelection(boolean) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
-
Sets whether the matching sense of attribute indices is inverted or not.
- setInvertSelection(boolean) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
-
Sets whether the matching sense of attribute indices is inverted or not.
- setLambda(double) - Method in class moa.classifiers.functions.SGD
-
Set the value of lambda to use
- setLambda(double) - Method in class moa.classifiers.functions.SGDMultiClass
-
Set the value of lambda to use
- setLambda(double) - Method in class moa.classifiers.functions.SPegasos
-
Set the value of lambda to use
- setLatestPreview(Object) - Method in class moa.gui.PreviewPanel
-
- setLatestResultPreview(Object) - Method in class moa.tasks.NullMonitor
-
- setLatestResultPreview(Object) - Method in class moa.tasks.StandardTaskMonitor
-
- setLatestResultPreview(Object) - Method in interface moa.tasks.TaskMonitor
-
Sets the current result to preview
- setLearningNode(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.Rule
-
- setLearningRate(double) - Method in class moa.classifiers.functions.SGD
-
Set the learning rate.
- setLearningRate(double) - Method in class moa.classifiers.functions.SGDMultiClass
-
Set the learning rate.
- setLearningRatio(double) - Method in class moa.classifiers.rules.functions.Perceptron
-
- setList(Option[]) - Method in class moa.options.ListOption
-
- setlistAttributes(int[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
-
- setlistAttributes(int[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree
-
- setLossFunction(int) - Method in class moa.classifiers.functions.SGD
-
Set the loss function to use.
- setLossFunction(int) - Method in class moa.classifiers.functions.SGDMultiClass
-
Set the loss function to use.
- setLossFunction(int) - Method in class moa.classifiers.functions.SPegasos
-
Set the loss function to use.
- setLRate(double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- setMacroLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
-
- setMacroVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
-
- setMaxInstInLeaf(int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Sets the maximum number of instances in a leaf.
- setMaxSize(int) - Method in class moa.classifiers.trees.ASHoeffdingTree
-
- setMaxXValue(int) - Method in class moa.gui.visualization.GraphAxes
-
- setMC - Variable in class moa.clusterers.outliers.MCOD.MCODBase
-
- setMeasurePerformance(boolean) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Sets whether to calculate the performance statistics or not.
- setMeasures(MeasureCollection[], MeasureCollection[], ActionListener) - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
-
- setMeasures(MeasureCollection[], ActionListener) - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
-
- setMeasureValue(String, String) - Method in class moa.cluster.Cluster
-
- setMeasureValue(String, double) - Method in class moa.cluster.Cluster
-
- setMeasureValue(String, double) - Method in class moa.gui.visualization.DataPoint
-
- setMeasureValue(String, String) - Method in class moa.gui.visualization.DataPoint
-
- SetMessagePrinter(MyBaseOutlierDetector.PrintMsg) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- setMicroLayerVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
-
- setMicroLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
-
- setMinBoxRelWidth(double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Sets the minimum relative box width.
- setModelContext(InstancesHeader) - Method in class moa.classifiers.AbstractClassifier
-
- setModelContext(InstancesHeader) - Method in interface moa.classifiers.Classifier
-
Sets the reference to the header of the data stream.
- setModelContext(InstancesHeader) - Method in class moa.classifiers.lazy.kNN
-
- setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.MajorityLabelset
-
- setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.MEKAClassifier
-
- setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.meta.MLOzaBag
-
- setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.meta.MLOzaBagAdwin
-
- setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
-
- setModelContext(InstancesHeader) - Method in class moa.clusterers.AbstractClusterer
-
- setModelContext(InstancesHeader) - Method in interface moa.clusterers.Clusterer
-
- setN(double) - Method in class moa.cluster.CFCluster
-
- setNIterations(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- setNode(Node) - Method in class moa.clusterers.clustree.Entry
-
- setNodeList(List<RuleSplitNode>) - Method in class moa.classifiers.rules.core.Rule
-
- setNodeSplitter(KDTreeNodeSplitter) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Sets the splitting method to use to split the nodes of the KDTree.
- setNodeWidthNormalization(boolean) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Sets whether if a nodes region is normalized
or not.
- setNormalizeNodeWidth(boolean) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Sets the flag for normalizing the widths of a KDTree Node by the width of
the dimension in the universe.
- setNumLabels(int) - Method in class moa.core.MultilabelInstance
-
- setOptions(String[]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.classifiers.meta.MOA
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.datagenerators.classifiers.classification.MOA
-
Parses a list of options for this object.
- setOutiler(boolean) - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
-
- setOutlierDetector(MyBaseOutlierDetector) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setOutlierSetupTab(OutlierSetupTab) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- setOutliersVisibility(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- setOutliersVisibility(boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setOwner(Rule) - Method in class moa.classifiers.rules.core.Rule.Builder
-
- setPanelTitle(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- setPanelTitle(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- setParent(FIMTDD.SplitNode) - Method in class moa.classifiers.trees.FIMTDD.Node
-
Set the parent node
- setParent(ORTO.InnerNode) - Method in class moa.classifiers.trees.ORTO.Node
-
Set the parent node
- setParentEntry(Entry) - Method in class moa.clusterers.clustree.Entry
-
- setPauseInterval(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- setPauseInterval(int) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- setPerceptron(Perceptron) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- setPointLayerVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
-
- setPointsVisibility(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- setPointsVisibility(boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setPointVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
-
- setPreviewPanel(PreviewPanel) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- setPreviewPanel(PreviewPanel) - Method in class moa.gui.RegressionTaskManagerPanel
-
- setPreviewPanel(PreviewPanel) - Method in class moa.gui.TaskManagerPanel
-
- setProcessedPointsCounter(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- setProcessedPointsCounter(int) - Method in class moa.gui.outliertab.OutlierVisualTab
-
- setProcessFrequency(int) - Method in class moa.gui.visualization.GraphAxes
-
- SetProgressInterval(int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- setRadius(double) - Method in class moa.cluster.SphereCluster
-
- setRandomSeed(int) - Method in class moa.classifiers.AbstractClassifier
-
- setRandomSeed(int) - Method in interface moa.classifiers.Classifier
-
Sets the seed for random number generation.
- setRandomSeed(int) - Method in class moa.clusterers.AbstractClusterer
-
- setRandomSeed(int) - Method in interface moa.clusterers.Clusterer
-
- setRating(int, int, double) - Method in class moa.recommender.rc.data.AbstractRecommenderData
-
- setRating(int, int, double) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
-
- setRating(int, int, double) - Method in interface moa.recommender.rc.data.RecommenderData
-
- setResetTree() - Method in class moa.classifiers.trees.ASHoeffdingTree
-
- setRFactor(double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
-
- setRuleNumberID(int) - Method in class moa.classifiers.rules.core.Rule
-
- setSaveInstanceData(boolean) - Method in class moa.clusterers.CobWeb
-
Set the value of saveInstances.
- setSecond(U) - Method in class moa.recommender.rc.utils.Pair
-
- setSeed(long) - Method in class moa.clusterers.streamkm.MTRandom
-
This method resets the state of this instance using the 64
bits of seed data provided.
- setSeed(byte[]) - Method in class moa.clusterers.streamkm.MTRandom
-
This method resets the state of this instance using the byte
array of seed data provided.
- setSeed(int[]) - Method in class moa.clusterers.streamkm.MTRandom
-
This method resets the state of this instance using the integer
array of seed data provided.
- SetShowProgress(boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- setSkipIdentical(boolean) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Sets the property to skip identical instances (with distance zero from
the target) from the set of neighbours returned.
- setSourceClustering(Clustering) - Method in class moa.clusterers.ClusterGenerator
-
- setSpeed(int) - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- setSpeed(int) - Method in class moa.gui.visualization.RunVisualizer
-
- setSplitIndex(int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- setStatisticsBranchSplit(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- setStatisticsNewRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- setStatisticsOtherBranchSplit(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- setStreamValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
-
- setStreamValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
-
- setSymbol(double) - Method in class moa.classifiers.rules.Predicates
-
- setTargetMean(TargetMean) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
-
- setTaskString(String) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- setTaskString(String, boolean) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
-
- setTaskString(String) - Method in class moa.gui.RegressionTaskManagerPanel
-
- setTaskString(String, boolean) - Method in class moa.gui.RegressionTaskManagerPanel
-
- setTaskString(String) - Method in class moa.gui.TaskManagerPanel
-
- setTaskString(String, boolean) - Method in class moa.gui.TaskManagerPanel
-
- setTaskThreadToPreview(TaskThread) - Method in class moa.gui.PreviewPanel
-
- setText(String) - Method in class moa.gui.TaskTextViewerPanel
-
- setText(String) - Method in class moa.gui.TextViewerPanel
-
- setTimestamp(long) - Method in class moa.clusterers.denstream.Timestamp
-
- SetTrace(boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- SetUserInfo(boolean, boolean, MyBaseOutlierDetector.PrintMsg, int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- setValue(double) - Method in class moa.classifiers.rules.Predicates
-
- setValue(int, double) - Method in class moa.core.DoubleVector
-
- setValue(boolean) - Method in class moa.options.FlagOption
-
- setValue(double) - Method in class moa.options.FloatOption
-
- setValue(int) - Method in class moa.options.IntOption
-
- setValue(String) - Method in class moa.options.StringOption
-
- setValueViaCLIString(String) - Method in class moa.options.AbstractClassOption
-
- setValueViaCLIString(String) - Method in class moa.options.ClassOption
-
- setValueViaCLIString(String) - Method in class moa.options.ClassOptionWithNames
-
- setValueViaCLIString(String) - Method in class moa.options.FlagOption
-
- setValueViaCLIString(String) - Method in class moa.options.FloatOption
-
- setValueViaCLIString(String) - Method in class moa.options.IntOption
-
- setValueViaCLIString(String) - Method in class moa.options.ListOption
-
- setValueViaCLIString(String) - Method in class moa.options.MultiChoiceOption
-
- setValueViaCLIString(String) - Method in interface moa.options.Option
-
Sets value of this option via the Command Line Interface text
- setValueViaCLIString(String) - Method in class moa.options.StringOption
-
- setValueViaCLIString(String) - Method in class moa.options.WEKAClassOption
-
- setViaCLIString(String) - Method in class moa.options.Options
-
- setViewport(JViewport) - Method in class moa.gui.visualization.GraphCanvas
-
- setVisited() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
-
- setVisualizer(RunOutlierVisualizer) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setW(int) - Method in class moa.classifiers.core.driftdetection.ADWIN
-
- setWaitWinFull(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- setWeight(double) - Method in class moa.cluster.SphereCluster
-
- setWeights(double[][]) - Method in class moa.classifiers.functions.Perceptron
-
- setWeights(double[]) - Method in class moa.classifiers.rules.functions.Perceptron
-
- setWeights(double[]) - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
- setWeightSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
-
- setWeightSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
-
- setXMaxValue(int) - Method in class moa.gui.visualization.GraphAxes
-
- setXResolution(double) - Method in class moa.gui.visualization.GraphAxes
-
- setYMinMaxValues(double, double) - Method in class moa.gui.visualization.GraphAxes
-
- setYMinMaxValues(double, double) - Method in class moa.gui.visualization.GraphCurve
-
- setZoom(int, int, int, JScrollPane) - Method in class moa.gui.visualization.StreamOutlierPanel
-
- setZoom(int, int, int, JScrollPane) - Method in class moa.gui.visualization.StreamPanel
-
- SGD - Class in moa.classifiers.functions
-
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
- SGD() - Constructor for class moa.classifiers.functions.SGD
-
- SGDMultiClass - Class in moa.classifiers.functions
-
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
- SGDMultiClass() - Constructor for class moa.classifiers.functions.SGDMultiClass
-
- shallowClear() - Method in class moa.clusterers.clustree.Entry
-
Clear the data
and the buffer Custer
in this
entry.
- showEditOptionsDialog(Component, String, OptionHandler) - Static method in class moa.gui.OptionsConfigurationPanel
-
- showErrorDialog(Component, String, String) - Static method in class moa.gui.GUIUtils
-
- showExceptionDialog(Component, String, Exception) - Static method in class moa.gui.GUIUtils
-
- showHelpDialog() - Method in class moa.gui.OptionsConfigurationPanel
-
- ShowProgress(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.ProgressInfo
-
- ShowProgress(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- ShowProgress(String, boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
-
- showSelectClassDialog(Component, String, Class<?>, String, String) - Static method in class moa.gui.ClassOptionSelectionPanel
-
- showSelectClassDialog(Component, String, Class<?>, String, String, String[]) - Static method in class moa.gui.ClassOptionWithNamesSelectionPanel
-
- shuffleRandomSeedOption - Variable in class moa.tasks.CacheShuffledStream
-
- sigma - Variable in class moa.streams.generators.HyperplaneGenerator
-
- sigmaPercentageOption - Variable in class moa.streams.generators.HyperplaneGenerator
-
- SilhouetteCoefficient - Class in moa.evaluation
-
- SilhouetteCoefficient() - Constructor for class moa.evaluation.SilhouetteCoefficient
-
- SimpleBudget - Class in moa.clusterers.clustree.util
-
- SimpleBudget(int) - Constructor for class moa.clusterers.clustree.util.SimpleBudget
-
- SimpleCOD - Class in moa.clusterers.outliers.SimpleCOD
-
- SimpleCOD() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCOD
-
- SimpleCODBase - Class in moa.clusterers.outliers.SimpleCOD
-
- SimpleCODBase() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
-
- SimpleCODBase.EventItem - Class in moa.clusterers.outliers.SimpleCOD
-
- SimpleCODBase.EventItem(ISBIndex.ISBNode, Long) - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
-
- SimpleCODBase.EventQueue - Class in moa.clusterers.outliers.SimpleCOD
-
- SimpleCODBase.EventQueue() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
-
- SingleClassifierDrift - Class in moa.classifiers.drift
-
Class for handling concept drift datasets with a wrapper on a
classifier.
- SingleClassifierDrift() - Constructor for class moa.classifiers.drift.SingleClassifierDrift
-
- size() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
-
returns the size of the heap.
- size() - Method in class moa.cluster.Clustering
-
- size() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
-
Returns the size of the set.
- size() - Method in class moa.recommender.rc.utils.DenseVector
-
- size() - Method in class moa.recommender.rc.utils.SparseVector
-
- size() - Method in class moa.recommender.rc.utils.Vector
-
- sizeCoresetOption - Variable in class moa.clusterers.streamkm.StreamKM
-
- SizeOf - Class in moa.core
-
- SizeOf() - Constructor for class moa.core.SizeOf
-
- sizeOf(Object) - Static method in class moa.core.SizeOf
-
Returns the size of the object.
- SizeWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
-
- SizeWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
-
- skewOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
-
- skip(long) - Method in class moa.core.InputStreamProgressMonitor
-
- skipIdenticalTipText() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
-
Returns the tip text for this property.
- slider - Variable in class moa.gui.FloatOptionEditComponent
-
- slider - Variable in class moa.gui.IntOptionEditComponent
-
- SLIDER_RESOLUTION - Static variable in class moa.gui.FloatOptionEditComponent
-
- sliderValueToFloatValue(int) - Method in class moa.gui.FloatOptionEditComponent
-
- SlidingMidPointOfWidestSide - Class in moa.classifiers.lazy.neighboursearch.kdtrees
-
The class that splits a node into two based on the midpoint value of the dimension in which the node's rectangle is widest.
- SlidingMidPointOfWidestSide() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
-
- smoothingOption - Variable in class moa.classifiers.meta.OCBoost
-
- smoothOption - Variable in class moa.tasks.Plot
-
Determines whether to smooth the plot with bezier curves.
- sortByValue(Map<K, V>) - Static method in class moa.streams.filters.ReplacingMissingValuesFilter.MapUtil
-
- sp - Variable in class moa.gui.visualization.PointPanel
-
- SparseVector - Class in moa.recommender.rc.utils
-
- SparseVector() - Constructor for class moa.recommender.rc.utils.SparseVector
-
- SparseVector(Map<Integer, Double>) - Constructor for class moa.recommender.rc.utils.SparseVector
-
- SparseVector.SparseVectorIterator - Class in moa.recommender.rc.utils
-
- SparseVector.SparseVectorIterator() - Constructor for class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
-
- speedCentroids - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
-
- speedChangeOption - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
-
- speedOption - Variable in class moa.clusterers.denstream.WithDBSCAN
-
- speedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- speedRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- SPegasos - Class in moa.classifiers.functions
-
Implements the stochastic variant of the Pegasos
(Primal Estimated sub-GrAdient SOlver for SVM) method of Shalev-Shwartz et
al.
- SPegasos() - Constructor for class moa.classifiers.functions.SPegasos
-
- SphereCluster - Class in moa.cluster
-
A simple implementation of the Cluster
interface representing
spherical clusters.
- SphereCluster(double[], double) - Constructor for class moa.cluster.SphereCluster
-
- SphereCluster() - Constructor for class moa.cluster.SphereCluster
-
- SphereCluster(double[], double, double) - Constructor for class moa.cluster.SphereCluster
-
- SphereCluster(int, double, Random) - Constructor for class moa.cluster.SphereCluster
-
- SphereCluster(List<? extends Instance>, int) - Constructor for class moa.cluster.SphereCluster
-
- spinner - Variable in class moa.gui.FloatOptionEditComponent
-
- spinner - Variable in class moa.gui.IntOptionEditComponent
-
- split() - Method in class moa.classifiers.rules.core.Rule
-
- splitAttIndex - Variable in class moa.streams.generators.RandomTreeGenerator.Node
-
- splitAttValue - Variable in class moa.streams.generators.RandomTreeGenerator.Node
-
- splitConfidenceOption - Variable in class moa.classifiers.rules.AbstractAMRules
-
- splitConfidenceOption - Variable in class moa.classifiers.rules.RuleClassifier
-
- splitConfidenceOption - Variable in class moa.classifiers.trees.FIMTDD
-
- splitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- splitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- splitConfidenceOption - Variable in class moa.classifiers.trees.ORTO
-
- SplitCriterion - Interface in moa.classifiers.core.splitcriteria
-
Interface for computing splitting criteria.
- splitCriterionOption - Variable in class moa.classifiers.trees.DecisionStump
-
- splitCriterionOption - Variable in class moa.classifiers.trees.FIMTDD
-
- splitCriterionOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
-
- splitCriterionOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- splitCriterionOption - Variable in class moa.classifiers.trees.ORTO
-
- splitFunction - Variable in class moa.clusterers.outliers.utils.mtree.MTree
-
- SplitFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
-
Defines an object to be used to split a node in an M-Tree.
- SplitFunction.SplitResult<DATA> - Class in moa.clusterers.outliers.utils.mtree
-
- SplitFunction.SplitResult(Pair<DATA>, Pair<Set<DATA>>) - Constructor for class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
-
- splitIndex - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
-
Splits a node into two.
- splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
-
Splits a node into two such that the overall sum of squared distances
of points to their centres on both sides of the (axis-parallel)
splitting plane is minimum.
- splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
-
Splits a node into two based on the median value of the dimension
in which the points have the widest spread.
- splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
-
Splits a node into two based on the midpoint value of the dimension
in which the points have the widest spread.
- splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
-
Splits a node into two based on the midpoint value of the dimension
in which the node's rectangle is widest.
- splitNodes(KDTreeNode, double[][], int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
-
Recursively splits nodes of a tree starting from the supplied node.
- splitParameterFromRemainingOptions(String) - Static method in class moa.options.Options
-
Internal method that splits a string into two parts - the parameter for
the current option, and the remaining options.
- splitRatioStatistics - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
-
- splitTest - Variable in class moa.classifiers.core.AttributeSplitSuggestion
-
- splitTest - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
-
- splitTest - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- splitTest - Variable in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- splitTest - Variable in class moa.classifiers.trees.ORTO.SplitNode
-
- sqDifference(int, double, double) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
-
Returns the squared difference of two values of an attribute.
- squared_radius() - Method in class moa.cluster.Miniball
-
Return the sqaured Radius of the miniball
- squaredActualClassStatistics - Variable in class moa.classifiers.rules.RuleClassification
-
- squaredAttributeStatistics - Variable in class moa.classifiers.rules.RuleClassification
-
- squaredAttributeStatistics - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
-
- squaredAttributeStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassification
-
- SQUAREDLOSS - Static variable in class moa.classifiers.functions.SGD
-
- SQUAREDLOSS - Static variable in class moa.classifiers.functions.SGDMultiClass
-
- squaredperceptronattributeStatistics - Variable in class moa.classifiers.rules.functions.Perceptron
-
- squaredperceptronsumY - Variable in class moa.classifiers.rules.functions.Perceptron
-
- squareError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- squareError - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
-
- squareTargetError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- SS - Variable in class moa.cluster.CFCluster
-
Squared sum of all the points added to the cluster.
- SSQ - Class in moa.evaluation
-
- SSQ() - Constructor for class moa.evaluation.SSQ
-
- SST - Variable in class moa.clusterers.clustream.ClustreamKernel
-
- stabIndexSizeOption - Variable in class moa.classifiers.meta.ADACC
-
Threshold for the stability index
- STAGGERGenerator - Class in moa.streams.generators
-
Stream generator for STAGGER Concept functions.
- STAGGERGenerator() - Constructor for class moa.streams.generators.STAGGERGenerator
-
- STAGGERGenerator.ClassFunction - Interface in moa.streams.generators
-
- StandardTaskMonitor - Class in moa.tasks
-
Class that represents a standard task monitor.
- StandardTaskMonitor() - Constructor for class moa.tasks.StandardTaskMonitor
-
- StatisticalCollection - Class in moa.evaluation
-
- StatisticalCollection() - Constructor for class moa.evaluation.StatisticalCollection
-
- statistics - Variable in class moa.classifiers.rules.AbstractAMRules
-
- statistics - Variable in class moa.classifiers.rules.core.Rule.Builder
-
- statistics(double[]) - Method in class moa.classifiers.rules.core.Rule.Builder
-
- statisticsBranchSplit - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- statisticsNewRuleActiveLearningNode - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- statisticsOtherBranchSplit() - Method in class moa.classifiers.rules.core.Rule
-
- statisticsOtherBranchSplit - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
-
- stdDev - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
-
- stepOption - Variable in class moa.classifiers.active.ActiveClassifier
-
- stop() - Method in class moa.gui.visualization.RunOutlierVisualizer
-
- stop() - Method in class moa.gui.visualization.RunVisualizer
-
- stopMemManagementOption - Variable in class moa.classifiers.trees.HoeffdingTree
-
- stopRun() - Method in class moa.gui.clustertab.ClusteringSetupTab
-
- stopRun() - Method in class moa.gui.outliertab.OutlierSetupTab
-
- stopVisualizer() - Method in class moa.gui.clustertab.ClusteringVisualTab
-
- stopVisualizer() - Method in class moa.gui.outliertab.OutlierVisualTab
-
- storedCountOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
Number of classifiers remembered and available for ensemble construction.
- storedLearners - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
- storedWeights - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
-
The weights of stored classifiers.
- STORMBase - Class in moa.clusterers.outliers.Angiulli
-
- STORMBase() - Constructor for class moa.clusterers.outliers.Angiulli.STORMBase
-
- StreamFilter - Interface in moa.streams.filters
-
Interface representing a stream filter.
- streamHeader - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
-
- streamHeader - Variable in class moa.streams.ConceptDriftRealStream
-
- streamHeader - Variable in class moa.streams.generators.AgrawalGenerator
-
- streamHeader - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
-
- streamHeader - Variable in class moa.streams.generators.HyperplaneGenerator
-
- streamHeader - Variable in class moa.streams.generators.LEDGenerator
-
- streamHeader - Variable in class moa.streams.generators.RandomRBFGenerator
-
- streamHeader - Variable in class moa.streams.generators.RandomTreeGenerator
-
- streamHeader - Variable in class moa.streams.generators.SEAGenerator
-
- streamHeader - Variable in class moa.streams.generators.STAGGERGenerator
-
- streamHeader - Variable in class moa.streams.generators.WaveformGenerator
-
- StreamKM - Class in moa.clusterers.streamkm
-
- StreamKM() - Constructor for class moa.clusterers.streamkm.StreamKM
-
- StreamObj - Class in moa.clusterers.outliers.AbstractC
-
- StreamObj(double...) - Constructor for class moa.clusterers.outliers.AbstractC.StreamObj
-
- StreamObj - Class in moa.clusterers.outliers.Angiulli
-
- StreamObj(double...) - Constructor for class moa.clusterers.outliers.Angiulli.StreamObj
-
- StreamObj - Class in moa.clusterers.outliers.MCOD
-
- StreamObj(double...) - Constructor for class moa.clusterers.outliers.MCOD.StreamObj
-
- StreamObj - Class in moa.clusterers.outliers.SimpleCOD
-
- StreamObj(double...) - Constructor for class moa.clusterers.outliers.SimpleCOD.StreamObj
-
- streamOption - Variable in class moa.streams.ConceptDriftRealStream
-
- streamOption - Variable in class moa.streams.ConceptDriftStream
-
- streamOption - Variable in class moa.streams.FilteredStream
-
- streamOption - Variable in class moa.streams.MultiFilteredStream
-
- streamOption - Variable in class moa.tasks.CacheShuffledStream
-
- streamOption - Variable in class moa.tasks.EvaluateClustering
-
- streamOption - Variable in class moa.tasks.EvaluateConceptDrift
-
- streamOption - Variable in class moa.tasks.EvaluateInterleavedChunks
-
Allows to select the stream the classifier will learn.
- streamOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
-
- streamOption - Variable in class moa.tasks.EvaluateModel
-
- streamOption - Variable in class moa.tasks.EvaluateModelRegression
-
- streamOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
-
- streamOption - Variable in class moa.tasks.EvaluatePrequential
-
- streamOption - Variable in class moa.tasks.EvaluatePrequentialRegression
-
- streamOption - Variable in class moa.tasks.LearnModel
-
- streamOption - Variable in class moa.tasks.LearnModelRegression
-
- streamOption - Variable in class moa.tasks.MeasureStreamSpeed
-
- streamOption - Variable in class moa.tasks.WriteStreamToARFFFile
-
- StreamOutlierPanel - Class in moa.gui.visualization
-
- StreamOutlierPanel(Color) - Constructor for class moa.gui.visualization.StreamOutlierPanel
-
- streamPanel - Variable in class moa.gui.visualization.ClusterPanel
-
- streamPanel - Variable in class moa.gui.visualization.OutlierPanel
-
- StreamPanel - Class in moa.gui.visualization
-
- StreamPanel() - Constructor for class moa.gui.visualization.StreamPanel
-
Creates new form StreamPanel
- streamParameterOption - Variable in class moa.tasks.RunStreamTasks
-
- streamPos - Variable in class moa.streams.CachedInstancesStream
-
- StringOption - Class in moa.options
-
String option.
- StringOption(String, char, String, String) - Constructor for class moa.options.StringOption
-
- StringOptionEditComponent - Class in moa.gui
-
An OptionEditComponent that lets the user edit a string option.
- StringOptionEditComponent(Option) - Constructor for class moa.gui.StringOptionEditComponent
-
- StringUtils - Class in moa.core
-
Class implementing some string utility methods.
- StringUtils() - Constructor for class moa.core.StringUtils
-
- stripPackagePrefix(String, Class<?>) - Static method in class moa.options.AbstractClassOption
-
Gets the class name without its package name prefix.
- subtractValues(DoubleVector) - Method in class moa.core.DoubleVector
-
- subtractValues(double[]) - Method in class moa.core.DoubleVector
-
- subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
-
- subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
-
- subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree.Node
-
- subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
-
- sum - Variable in class moa.classifiers.rules.functions.TargetMean
-
- sum - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
-
- sum - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
-
- sumAbsolutError - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
-
- summary - Variable in class moa.core.GreenwaldKhannaQuantileSummary
-
- sumOfAbsErrors - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- sumOfSquares - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- sumOfSquares - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- sumOfValues - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
-
- sumOfValues - Variable in class moa.classifiers.trees.FIMTDD.Node
-
- sumOfValues() - Method in class moa.core.DoubleVector
-
- sumRatings - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
-
- sumTarget - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
-
- Supervised - Variable in class moa.classifiers.rules.RuleClassifier
-
- supportsCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
-
Returns true because we do support a custom editor.
- suppressHeaderOption - Variable in class moa.tasks.WriteStreamToARFFFile
-
- suppressIrrelevantAttributesOption - Variable in class moa.streams.generators.LEDGenerator
-
- switchedAlternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
-
- swms - Variable in class moa.classifiers.meta.OzaBoost
-
- swms - Variable in class moa.classifiers.meta.OzaBoostAdwin
-