A B C D E F G H I J K L M N O P Q R S T U V W X Y _ 

A

AbruptChangeGenerator - Class in moa.streams.generators.cd
 
AbruptChangeGenerator() - Constructor for class moa.streams.generators.cd.AbruptChangeGenerator
 
AbstractAMRules - Class in moa.classifiers.rules
 
AbstractAMRules() - Constructor for class moa.classifiers.rules.AbstractAMRules
 
AbstractC - Class in moa.clusterers.outliers.AbstractC
 
AbstractC() - Constructor for class moa.clusterers.outliers.AbstractC.AbstractC
 
AbstractCBase - Class in moa.clusterers.outliers.AbstractC
 
AbstractCBase() - Constructor for class moa.clusterers.outliers.AbstractC.AbstractCBase
 
AbstractChangeDetector - Class in moa.classifiers.core.driftdetection
Abstract Change Detector.
AbstractChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.AbstractChangeDetector
 
AbstractClassifier - Class in moa.classifiers
Abstract Classifier.
AbstractClassifier() - Constructor for class moa.classifiers.AbstractClassifier
Creates an classifier and setups the random seed option if the classifier is randomizable.
AbstractClassOption - Class in moa.options
Abstract class option.
AbstractClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.AbstractClassOption
Creates a new instance of an abstract option given its class name, command line interface text, its purpose, its class type and its default command line interface text.
AbstractClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.AbstractClassOption
Creates a new instance of an abstract option given its class name, command line interface text, its purpose, its class type, default command line interface text, and its null text.
AbstractClusterer - Class in moa.clusterers
 
AbstractClusterer() - Constructor for class moa.clusterers.AbstractClusterer
 
AbstractConceptDriftGenerator - Class in moa.streams.generators.cd
 
AbstractConceptDriftGenerator() - Constructor for class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
AbstractErrorWeightedVote - Class in moa.classifiers.rules.core.voting
AbstractErrorWeightedVote class for weighted votes based on estimates of errors.
AbstractErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
AbstractMacroClusterer - Class in moa.clusterers.macro
 
AbstractMacroClusterer() - Constructor for class moa.clusterers.macro.AbstractMacroClusterer
 
AbstractMOAObject - Class in moa
Abstract MOA Object.
AbstractMOAObject() - Constructor for class moa.AbstractMOAObject
 
AbstractOption - Class in moa.options
Abstract option.
AbstractOption(String, char, String) - Constructor for class moa.options.AbstractOption
Creates a new instance of an abstract option given its class name, command line interface text and its purpose.
AbstractOptionHandler - Class in moa.options
Abstract Option Handler.
AbstractOptionHandler() - Constructor for class moa.options.AbstractOptionHandler
 
AbstractRecommenderData - Class in moa.recommender.rc.data
 
AbstractRecommenderData() - Constructor for class moa.recommender.rc.data.AbstractRecommenderData
 
AbstractStreamFilter - Class in moa.streams.filters
Abstract Stream Filter.
AbstractStreamFilter() - Constructor for class moa.streams.filters.AbstractStreamFilter
 
AbstractTabPanel - Class in moa.gui
Abstract Tab Panel.
AbstractTabPanel() - Constructor for class moa.gui.AbstractTabPanel
 
AbstractTask - Class in moa.tasks
Abstract Task.
AbstractTask() - Constructor for class moa.tasks.AbstractTask
 
acc1 - Variable in class moa.gui.TaskTextViewerPanel
 
acc2 - Variable in class moa.gui.TaskTextViewerPanel
 
accept(File) - Method in class moa.gui.FileExtensionFilter
 
accumulatedError - Variable in class moa.classifiers.rules.functions.Perceptron
 
Accuracy - Class in moa.evaluation
 
Accuracy() - Constructor for class moa.evaluation.Accuracy
 
accuracyBaseLearner - Variable in class moa.classifiers.active.ActiveClassifier
 
AccuracyUpdatedEnsemble - Class in moa.classifiers.meta
The revised version of the Accuracy Updated Ensemble as proposed by Brzezinski and Stefanowski in "Reacting to Different Types of Concept Drift: The Accuracy Updated Ensemble Algorithm", IEEE Trans.
AccuracyUpdatedEnsemble() - Constructor for class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
AccuracyWeightedEnsemble - Class in moa.classifiers.meta
The Accuracy Weighted Ensemble classifier as proposed by Wang et al.
AccuracyWeightedEnsemble() - Constructor for class moa.classifiers.meta.AccuracyWeightedEnsemble
 
actionPerformed(ActionEvent) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
actionPerformed(ActionEvent) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
actionPerformed(ActionEvent) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
actionPerformed(ActionEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
actionPerformed(ActionEvent) - Method in class moa.gui.TaskTextViewerPanel
 
actionPerformed(ActionEvent) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
actionPerformed(ActionEvent) - Method in class moa.gui.visualization.RunVisualizer
 
activateLearningNode(HoeffdingOptionTree.InactiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
activateLearningNode(HoeffdingTree.InactiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
ActiveClassifier - Class in moa.classifiers.active
Active learning setting for evolving data streams.
ActiveClassifier() - Constructor for class moa.classifiers.active.ActiveClassifier
 
activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingTree
 
activeLeafByteSizeEstimate - Variable in class moa.classifiers.trees.ORTO
 
activeLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
activeLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
 
activeLearningStrategyOption - Variable in class moa.classifiers.active.ActiveClassifier
 
actualClassStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
acuityOption - Variable in class moa.clusterers.CobWeb
 
ADACC - Class in moa.classifiers.meta
Anticipative and Dynamic Adaptation to Concept Changes.
ADACC() - Constructor for class moa.classifiers.meta.ADACC
 
AdaHoeffdingOptionTree - Class in moa.classifiers.trees
Adaptive decision option tree for streaming data with adaptive Naive Bayes classification at leaves.
AdaHoeffdingOptionTree() - Constructor for class moa.classifiers.trees.AdaHoeffdingOptionTree
 
AdaHoeffdingOptionTree.AdaLearningNode - Class in moa.classifiers.trees
 
AdaHoeffdingOptionTree.AdaLearningNode(double[]) - Constructor for class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
Adaptable - Variable in class moa.classifiers.trees.ORTO
 
Adaptable - Variable in class moa.classifiers.trees.ORTO.Node
 
add(CFCluster) - Method in class moa.cluster.CFCluster
 
add(Cluster) - Method in class moa.cluster.Clustering
add a cluster to the clustering
add(CFCluster) - Method in class moa.clusterers.clustream.ClustreamKernel
 
add(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
Adds the given cluster to this cluster, without making this cluster older.
add(Entry) - Method in class moa.clusterers.clustree.Entry
Add the data cluster of another entry to the data cluster of this entry.
add(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Adds and indexes a data object.
add(int, T) - Method in class moa.core.AutoExpandVector
 
add(T) - Method in class moa.core.AutoExpandVector
 
add(Instance) - Method in class moa.core.InstancesHeader
 
add(double) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator.Estimator
 
add(double) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
 
add(double) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
add(double) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
addAll(Collection<? extends T>) - Method in class moa.core.AutoExpandVector
 
addAll(int, Collection<? extends T>) - Method in class moa.core.AutoExpandVector
 
addButtonActionListener(ActionListener) - Method in class moa.gui.clustertab.ClusteringSetupTab
 
addButtonActionListener(ActionListener) - Method in class moa.gui.outliertab.OutlierSetupTab
 
addChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionEditComponent
Adds the listener to the internal set of listeners.
addChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionWithNamesEditComponent
Adds the listener to the internal set of listeners.
addClusterChangeListener(ClusterEventListener) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
Add a listener
addedPermanent - Variable in class moa.classifiers.meta.ADACC
Number of added snapshots
addEmptyValue(int) - Method in class moa.evaluation.MeasureCollection
 
addEntry(Entry, long) - Method in class moa.clusterers.clustree.Node
Add a new Entry to this node.
addEventType(String) - Method in class moa.evaluation.MeasureCollection
 
addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Adds one instance to KDTree loosly.
addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Adds the given instance info.
addInstanceInfo(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Adds information from the given instance without modifying the datastructure a lot.
addInstanceToTree(Instance, KDTreeNode) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Recursively adds an instance to the tree starting from the supplied KDTreeNode.
addItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
addItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
addItem(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.data.RecommenderData
 
additionalPlotOption - Variable in class moa.tasks.Plot
Additional plot options.
additionalSetOption - Variable in class moa.tasks.Plot
Addition pre-plot gunplot commands.
addLearningAttempt(int, double[], double) - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
addLearningAttempt(int, double[], double) - Method in interface moa.evaluation.LearningPerformanceEvaluator
 
addMeasurementName(String) - Method in class moa.evaluation.LearningCurve
 
AddNode(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
AddNoiseFilter - Class in moa.streams.filters
Filter for adding random noise to examples in a stream.
AddNoiseFilter() - Constructor for class moa.streams.filters.AddNoiseFilter
 
addNoiseOption - Variable in class moa.streams.generators.WaveformGenerator
 
addObject(DataObject) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Adds a DataObject to the set.
addObject(DataSet) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Adds all objects in the given data set
addObservation(double, double) - Method in class moa.core.GaussianEstimator
 
addObservations(GaussianEstimator) - Method in class moa.core.GaussianEstimator
 
addOldLabel(double) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
addOption(Option) - Method in class moa.options.Options
 
AddOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
AddPrecNeigh(Long) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
AddPrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
AddPrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
addResult(Instance, double[]) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
addResult(Instance, double[]) - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
addResult(Instance, double[]) - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
addResult(Instance, double[]) - Method in interface moa.evaluation.ClassificationPerformanceEvaluator
Adds a learning result to this evaluator.
addResult(Instance, double[]) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
addResult(Instance, double[]) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
addResult(Instance, double[]) - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
Add a Result.
addResult(Instance, double[]) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
addResult(Instance, double[]) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
addTaskCompletionListener(TaskCompletionListener) - Method in class moa.tasks.TaskThread
 
addText(String) - Method in class moa.gui.TextViewerPanel
 
addTimePerObject(double) - Method in class moa.evaluation.OutlierPerformance
 
addToStored(Classifier, double) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Adds a classifier to the storage.
addToStored(Classifier, double) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Adds a classifier to the storage.
addToStored(OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory, double) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Adds a classifier to the storage.
addToValue(int, double) - Method in class moa.core.DoubleVector
 
addToValues(double) - Method in class moa.core.DoubleVector
 
addUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
addUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
addUser(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.data.RecommenderData
 
addValue(int, double) - Method in class moa.evaluation.MeasureCollection
 
addValue(String, double) - Method in class moa.evaluation.MeasureCollection
 
addValues(DoubleVector) - Method in class moa.core.DoubleVector
 
addValues(double[]) - Method in class moa.core.DoubleVector
 
addVectors(double[], double[]) - Static method in class moa.cluster.CFCluster
Adds the second array to the first array element by element.
addVote(double[], double) - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
addVote(double[], double) - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Adds a vote and the corresponding error for the computation of the weighted vote and respective weighted error.
ADError - Variable in class moa.classifiers.meta.LeveragingBag
 
ADError - Variable in class moa.classifiers.meta.LimAttClassifier
 
ADError - Variable in class moa.classifiers.meta.OzaBagAdwin
 
ADError - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
ADWIN - Class in moa.classifiers.core.driftdetection
ADaptive sliding WINdow method.
ADWIN() - Constructor for class moa.classifiers.core.driftdetection.ADWIN
 
ADWIN(double) - Constructor for class moa.classifiers.core.driftdetection.ADWIN
 
ADWIN(int) - Constructor for class moa.classifiers.core.driftdetection.ADWIN
 
adwin - Variable in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
ADWINChangeDetector - Class in moa.classifiers.core.driftdetection
Drift detection method based in ADWIN.
ADWINChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
adwinReplaceWorstClassifierOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
afterAddInstance(KDTreeNode) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Corrects the start and end indices of a KDTreeNode after an instance is added to the tree.
aggregate(ClusKernel, long, double) - Method in class moa.clusterers.clustree.ClusKernel
Make this cluster older bei weighting it and add to this cluster the given cluster.
aggregateCluster(ClusKernel, long, double) - Method in class moa.clusterers.clustree.Entry
Aggregate the given Kernel to the data cluster of this entry.
aggregateEntry(Entry, long, double) - Method in class moa.clusterers.clustree.Entry
Aggregate the data in the Kernel of the other Entry.
aggregateToBuffer(ClusKernel, long, double) - Method in class moa.clusterers.clustree.Entry
Aggregate the given Kernel to the buffer cluster of this entry.
AgrawalGenerator - Class in moa.streams.generators
Stream generator for Agrawal dataset.
AgrawalGenerator() - Constructor for class moa.streams.generators.AgrawalGenerator
 
AgrawalGenerator.ClassFunction - Interface in moa.streams.generators
 
alpha - Variable in class moa.classifiers.meta.OCBoost
 
alpha - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
alpha - Variable in class moa.classifiers.meta.OzaBagASHT
 
alpha - Variable in class moa.classifiers.rules.core.Rule.Builder
 
alpha(double) - Method in class moa.classifiers.rules.core.Rule.Builder
 
alpha - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
alpha - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
alpha - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator.Estimator
 
alpha - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
 
alphainc - Variable in class moa.classifiers.meta.OCBoost
 
alphaOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
alphaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
alphaOption - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
alphaOption - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
alphaOption - Variable in class moa.streams.ConceptDriftRealStream
 
alphaOption - Variable in class moa.streams.ConceptDriftStream
 
alphaOption - Variable in class moa.tasks.EvaluatePrequential
 
alphaOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
Alternate - Variable in class moa.classifiers.trees.ORTO.Node
 
alternateTree - Variable in class moa.classifiers.trees.FIMTDD.Node
 
alternateTree - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
alternateTree - Variable in class moa.classifiers.trees.ORTO.Node
 
alternateTreeFadingFactorOption - Variable in class moa.classifiers.trees.FIMTDD
 
AlternateTreeFadingFactorOption - Variable in class moa.classifiers.trees.ORTO
 
alternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
alternateTreeTimeOption - Variable in class moa.classifiers.trees.FIMTDD
 
AlternateTreeTimeOption - Variable in class moa.classifiers.trees.ORTO
 
alternateTreeTMinOption - Variable in class moa.classifiers.trees.FIMTDD
 
AlternateTreeTMinOption - Variable in class moa.classifiers.trees.ORTO
 
amRules - Variable in class moa.classifiers.rules.core.Rule
 
amRules - Variable in class moa.classifiers.rules.core.Rule.Builder
 
amRules(AbstractAMRules) - Method in class moa.classifiers.rules.core.Rule.Builder
 
amRules - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
AMRulesRegressor - Class in moa.classifiers.rules
 
AMRulesRegressor() - Constructor for class moa.classifiers.rules.AMRulesRegressor
 
anomalyDetectionOption - Variable in class moa.classifiers.rules.RuleClassifier
 
anomalyNumInstThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
anomalyNumInstThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
anomalyProbabilityThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
AnyOut - Class in moa.clusterers.outliers.AnyOut
 
AnyOut() - Constructor for class moa.clusterers.outliers.AnyOut.AnyOut
 
AnyOutCore - Class in moa.clusterers.outliers.AnyOut
 
AnyOutCore() - Constructor for class moa.clusterers.outliers.AnyOut.AnyOutCore
 
appendIndent(StringBuilder, int) - Static method in class moa.core.StringUtils
 
appendIndented(StringBuilder, int, String) - Static method in class moa.core.StringUtils
 
appendNewline(StringBuilder) - Static method in class moa.core.StringUtils
 
appendNewlineIndented(StringBuilder, int, String) - Static method in class moa.core.StringUtils
 
applyChanges() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
applyChanges() - Method in class moa.gui.OptionsConfigurationPanel
 
applyChanges() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
applyDrawDecay(float, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
applyDrawDecay(float) - Method in class moa.gui.visualization.StreamPanel
 
applyState() - Method in class moa.gui.ClassOptionEditComponent
 
applyState() - Method in class moa.gui.ClassOptionWithNamesEditComponent
 
applyState() - Method in class moa.gui.FileOptionEditComponent
 
applyState() - Method in class moa.gui.FlagOptionEditComponent
 
applyState() - Method in class moa.gui.FloatOptionEditComponent
 
applyState() - Method in class moa.gui.IntOptionEditComponent
 
applyState() - Method in class moa.gui.MultiChoiceOptionEditComponent
 
applyState() - Method in interface moa.gui.OptionEditComponent
This method applies the state
applyState() - Method in class moa.gui.StringOptionEditComponent
 
applyState() - Method in class moa.gui.WEKAClassOptionEditComponent
 
ApplyToCanvas(BufferedImage) - Method in class moa.gui.visualization.StreamOutlierPanel
 
ApproxSTORM - Class in moa.clusterers.outliers.Angiulli
 
ApproxSTORM() - Constructor for class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
ApproxSTORM.ISBNodeAppr - Class in moa.clusterers.outliers.Angiulli
 
ApproxSTORM.ISBNodeAppr(Instance, StreamObj, Long, int) - Constructor for class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
arffFileOption - Variable in class moa.streams.ArffFileStream
 
arffFileOption - Variable in class moa.streams.clustering.FileStream
 
arffFileOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
ArffFileStream - Class in moa.streams
Stream reader of ARFF files.
ArffFileStream() - Constructor for class moa.streams.ArffFileStream
 
ArffFileStream(String, int) - Constructor for class moa.streams.ArffFileStream
 
array - Variable in class moa.core.DoubleVector
 
ASHoeffdingTree - Class in moa.classifiers.trees
Adaptive Size Hoeffding Tree used in Bagging using trees of different size.
ASHoeffdingTree() - Constructor for class moa.classifiers.trees.ASHoeffdingTree
 
assignSubToCenters(KDTreeNode, Instances, int[], int[]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Assigns instances of this node to center.
attachUpdatable(Updatable) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
attachUpdatable(Updatable) - Method in interface moa.recommender.rc.data.RecommenderData
 
attemptToSplit(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
 
attemptToSplit(FIMTDD.LeafNode, FIMTDD.SplitNode, int) - Method in class moa.classifiers.trees.FIMTDD
 
attemptToSplit(HoeffdingOptionTree.ActiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
attemptToSplit(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
attIndex - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
attIndex - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
attIndex - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
attIndex - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
attNoiseFractionOption - Variable in class moa.streams.filters.AddNoiseFilter
 
AttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
Interface for observing the class data distribution for an attribute.
attributeIndicesTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns the tip text for this property.
attributeMissingValues - Variable in class moa.classifiers.rules.RuleClassification
 
attributeObservers - Variable in class moa.classifiers.bayes.NaiveBayes
 
attributeObservers - Variable in class moa.classifiers.rules.RuleClassifier
 
attributeObservers - Variable in class moa.classifiers.trees.DecisionStump
 
attributeObservers - Variable in class moa.classifiers.trees.FIMTDD.Node
 
attributeObservers - Variable in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
attributeObservers - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
attributeObservers - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
attributeObserversGauss - Variable in class moa.classifiers.rules.RuleClassifier
 
AttributeSplitSuggestion - Class in moa.classifiers.core
Class for computing attribute split suggestions given a split test.
AttributeSplitSuggestion(InstanceConditionalTest, double[][], double) - Constructor for class moa.classifiers.core.AttributeSplitSuggestion
 
attributesProbability - Variable in class moa.classifiers.rules.RuleClassification
 
attributeStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
attributeStatistics - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
attributeStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassification
 
attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
attValDistPerClass - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
attValObservers - Variable in class moa.streams.filters.AddNoiseFilter
 
attValue - Variable in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
attValue - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
attValue - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
AutoClassDiscovery - Class in moa.core
Class for discovering classes via reflection in the java class path.
AutoClassDiscovery() - Constructor for class moa.core.AutoClassDiscovery
 
AutoExpandVector<T> - Class in moa.core
Vector with the capability of automatic expansion.
AutoExpandVector() - Constructor for class moa.core.AutoExpandVector
 
AutoExpandVector(int) - Constructor for class moa.core.AutoExpandVector
 
autoFreqStrings - Static variable in class moa.gui.PreviewPanel
 
autoFreqTimeSecs - Static variable in class moa.gui.PreviewPanel
 
autoRefreshComboBox - Variable in class moa.gui.PreviewPanel
 
autoRefreshLabel - Variable in class moa.gui.PreviewPanel
 
autoRefreshTimer - Variable in class moa.gui.PreviewPanel
 
averageError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
averageError - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
averageMeasurements(Measurement[][]) - Static method in class moa.core.Measurement
 
averageTargetError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
AWTInteractiveRenderer - Interface in moa.gui
 
AWTRenderable - Interface in moa.gui
Interface representing a component that is renderable
AWTRenderer - Interface in moa.gui
Interface representing a component to edit an option.

B

b - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
 
balanceClassesOption - Variable in class moa.streams.generators.AgrawalGenerator
 
balanceClassesOption - Variable in class moa.streams.generators.SEAGenerator
 
balanceClassesOption - Variable in class moa.streams.generators.STAGGERGenerator
 
baseLearner - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
baseLearnerOption - Variable in class moa.classifiers.active.ActiveClassifier
 
baseLearnerOption - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
baseLearnerOption - Variable in class moa.classifiers.meta.LeveragingBag
 
baseLearnerOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
baseLearnerOption - Variable in class moa.classifiers.meta.OCBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBag
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBagAdwin
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBoost
 
baseLearnerOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
baseLearnerOption - Variable in class moa.classifiers.meta.RandomRules
 
baseLearnerOption - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
baseLearnerOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
BaselinePredictor - Class in moa.recommender.predictor
A naive algorithm which combines the global mean of all the existing ratings, the mean rating of the user and the mean rating of the item to make a prediction.
BaselinePredictor() - Constructor for class moa.recommender.predictor.BaselinePredictor
 
BaselinePredictor - Class in moa.recommender.rc.predictor.impl
 
BaselinePredictor(RecommenderData) - Constructor for class moa.recommender.rc.predictor.impl.BaselinePredictor
 
BasicClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that performs basic incremental evaluation.
BasicClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.BasicClassificationPerformanceEvaluator
 
BasicClusteringPerformanceEvaluator - Class in moa.evaluation
Clustering evaluator that performs basic incremental evaluation.
BasicClusteringPerformanceEvaluator() - Constructor for class moa.evaluation.BasicClusteringPerformanceEvaluator
 
BasicConceptDriftPerformanceEvaluator - Class in moa.evaluation
 
BasicConceptDriftPerformanceEvaluator() - Constructor for class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
BasicRegressionPerformanceEvaluator - Class in moa.evaluation
Regression evaluator that performs basic incremental evaluation.
BasicRegressionPerformanceEvaluator() - Constructor for class moa.evaluation.BasicRegressionPerformanceEvaluator
 
BatchCmd - Class in moa.gui
 
BatchCmd(AbstractClusterer, ClusteringStream, MeasureCollection[], int) - Constructor for class moa.gui.BatchCmd
 
bestSplit - Variable in class moa.classifiers.trees.DecisionStump
 
bestSuggestion - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
betaOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
betaOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
bigTreesOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
binaryGeneratorOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
binarySplitsOption - Variable in class moa.classifiers.trees.DecisionStump
 
binarySplitsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
binarySplitsOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
BinaryTreeNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using a binary tree.
BinaryTreeNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
BinaryTreeNumericAttributeClassObserver.Node - Class in moa.classifiers.core.attributeclassobservers
 
BinaryTreeNumericAttributeClassObserver.Node(double, int, double) - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
BinaryTreeNumericAttributeClassObserverRegression - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using a binary tree.
BinaryTreeNumericAttributeClassObserverRegression() - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
BinaryTreeNumericAttributeClassObserverRegression.Node - Class in moa.classifiers.core.attributeclassobservers
 
BinaryTreeNumericAttributeClassObserverRegression.Node(double, double) - Constructor for class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
binList - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
blockSeqDrift2Option - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
blockSeqDriftOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
boundaryClass - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
boundaryWeight - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
bOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Returns the number of the branch for an instance, -1 if unknown.
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
branchForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
branchForInstance(Instance) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
breadthFirstStrat - Variable in class moa.clusterers.clustree.ClusTree
Parameter to determine wich strategy to use
BRISMFPredictor - Class in moa.recommender.predictor
Implementation of the algorithm described in Scalable Collaborative Filtering Approaches for Large Recommender Systems (Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk).
BRISMFPredictor() - Constructor for class moa.recommender.predictor.BRISMFPredictor
 
BRISMFPredictor - Class in moa.recommender.rc.predictor.impl
Implementation of the algorithm described in Scalable Collaborative Filtering Approaches for Large Recommender Systems (Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk).
BRISMFPredictor(int, RecommenderData, boolean) - Constructor for class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
BRISMFPredictor(int, RecommenderData, double, double, boolean) - Constructor for class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
browseButton - Variable in class moa.gui.FileOptionEditComponent
 
browseForFile() - Method in class moa.gui.FileOptionEditComponent
 
bShowProgress - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
bStopAlgorithm - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
bTrace - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
BucketManager - Class in moa.clusterers.streamkm
 
BucketManager(int, int, int, MTRandom) - Constructor for class moa.clusterers.streamkm.BucketManager
initializes a bucketmanager for n points with bucketsize maxsize and dimension d
BucketManager.Bucket - Class in moa.clusterers.streamkm
 
BucketManager.Bucket(int, int) - Constructor for class moa.clusterers.streamkm.BucketManager.Bucket
 
buckets - Variable in class moa.clusterers.streamkm.BucketManager
 
Budget - Interface in moa.clusterers.clustree.util
This is an interface for classes that are to be given along with every data point inserted in the tree.
budgetOption - Variable in class moa.classifiers.active.ActiveClassifier
 
build() - Method in class moa.classifiers.rules.core.Rule.Builder
 
build() - Method in class moa.cluster.Miniball
Recalculate Miniball parameter Center and Radius
buildClassifier() - Method in class moa.classifiers.meta.WEKAClassifier
 
buildClassifier(Instances) - Method in class weka.classifiers.meta.MOA
Generates a classifier.
buildingModelTree() - Method in class moa.classifiers.trees.FIMTDD
 
buildKDTree(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Builds the KDTree on the supplied set of instances/points.
buildTree(DataSet) - Method in class moa.clusterers.outliers.AnyOut.util.EMTopDownTreeBuilder
 
bWarning - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
bWarning - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
bWarning - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
byteSizeEstimateOverheadFraction - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
byteSizeEstimateOverheadFraction - Variable in class moa.classifiers.trees.HoeffdingTree
 
byteSizeEstimateOverheadFraction - Variable in class moa.classifiers.trees.ORTO
 

C

c_max - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
c_min - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
cache - Variable in class moa.streams.filters.CacheFilter
 
cached(DistanceFunction<Data>) - Static method in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
Creates a cached version of a distance function.
cachedClassNames - Static variable in class moa.core.AutoClassDiscovery
 
CachedInstancesStream - Class in moa.streams
Stream generator for representing a stream that is cached in memory.
CachedInstancesStream(Instances) - Constructor for class moa.streams.CachedInstancesStream
 
CacheFilter - Class in moa.streams.filters
Filter for representing a stream that is cached in memory.
CacheFilter() - Constructor for class moa.streams.filters.CacheFilter
 
CacheShuffledStream - Class in moa.tasks
Task for storing and shuffling examples in memory.
CacheShuffledStream() - Constructor for class moa.tasks.CacheShuffledStream
 
cacheTestOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
calcByteSize() - Method in class moa.classifiers.trees.FIMTDD
 
calcByteSize() - Method in class moa.classifiers.trees.FIMTDD.Node
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
calcByteSize() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
calcByteSize() - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
calcByteSize() - Method in class moa.classifiers.trees.ORTO
 
calcByteSize() - Method in class moa.classifiers.trees.ORTO.InnerNode
 
calcByteSize() - Method in class moa.classifiers.trees.ORTO.Node
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.FIMTDD.Node
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
calcByteSizeIncludingSubtree() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
calcDistance(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
Calculate the distance to this other cluster.
calcDistance(ClusKernel) - Method in class moa.clusterers.clustree.Entry
Calculates the distance to the data in this entry.
calcDistance(Entry) - Method in class moa.clusterers.clustree.Entry
Calculates the distance to the data in this entry of the data in the given entry.
calcLogLoss(double, double, double) - Static method in class moa.core.utils.EvalUtils
Calculate Log Loss.
calculate(DATA, DATA) - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunction
 
calculateDetph(ORTO) - Method in class moa.classifiers.trees.ORTO.InnerNode
 
calculateDetph(ORTO) - Method in class moa.classifiers.trees.ORTO.Node
 
calculatePromise() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
calculatePromise() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
calibrateThreshold(ArrayList<double[]>, double) - Static method in class moa.core.utils.EvalUtils
Calibrate a threshold.
calibrateThresholds(ArrayList<double[]>, double[]) - Static method in class moa.core.utils.EvalUtils
Calibrate thresholds.
cancelFlag - Variable in class moa.tasks.StandardTaskMonitor
 
cancelSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
cancelSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
cancelTask() - Method in class moa.tasks.TaskThread
 
cancelTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
cancelTaskButton - Variable in class moa.gui.TaskManagerPanel
 
candidate - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Candidate classifier.
candidate - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Candidate classifier.
candidateClassifier - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
candidateIsFullOwner(KDTreeNode, Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns true if candidate is a full owner in respect to a competitor.
caseAnomaly - Variable in class moa.classifiers.rules.RuleClassifier
 
caseAnomalySupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
cds - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
CDTaskManagerPanel - Class in moa.gui.conceptdrift
This panel displays the running tasks.
CDTaskManagerPanel() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel
 
CDTaskManagerPanel.ProgressCellRenderer - Class in moa.gui.conceptdrift
 
CDTaskManagerPanel.ProgressCellRenderer() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
CDTaskManagerPanel.TaskTableModel - Class in moa.gui.conceptdrift
 
CDTaskManagerPanel.TaskTableModel() - Constructor for class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
center() - Method in class moa.cluster.Miniball
Return the center of the Miniball
centerInstances(Instances, int[], double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Assigns instances to centers using KDTree.
centre - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
 
centresStreamingCoreset - Variable in class moa.clusterers.streamkm.StreamKM
 
centroids - Variable in class moa.streams.generators.RandomRBFGenerator
 
centroidWeights - Variable in class moa.streams.generators.RandomRBFGenerator
 
cEstimacion - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
CFCluster - Class in moa.cluster
 
CFCluster(Instance, int) - Constructor for class moa.cluster.CFCluster
Instantiates an empty kernel with the given dimensionality.
CFCluster(int) - Constructor for class moa.cluster.CFCluster
 
CFCluster(double[], int) - Constructor for class moa.cluster.CFCluster
 
CFCluster(CFCluster) - Constructor for class moa.cluster.CFCluster
 
change - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
changeCluster(ClusterEvent) - Method in class moa.gui.BatchCmd
 
changeCluster(ClusterEvent) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
changeCluster(ClusterEvent) - Method in class moa.gui.visualization.RunVisualizer
 
changeCluster(ClusterEvent) - Method in interface moa.streams.clustering.ClusterEventListener
 
changeDetected - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
changeDetection - Variable in class moa.classifiers.rules.core.Rule.Builder
 
changeDetection(boolean) - Method in class moa.classifiers.rules.core.Rule.Builder
 
changeDetection - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
changeDetection - Variable in class moa.classifiers.trees.FIMTDD.Node
 
ChangeDetectionMeasures - Class in moa.evaluation
 
ChangeDetectionMeasures() - Constructor for class moa.evaluation.ChangeDetectionMeasures
 
ChangeDetector - Interface in moa.classifiers.core.driftdetection
Change Detector interface to implement methods that detects change.
ChangeDetectorLearner - Class in moa.learners
Class for detecting concept drift and to be used as a learner.
ChangeDetectorLearner() - Constructor for class moa.learners.ChangeDetectorLearner
 
changeDetectorsOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
changeDriftOption - Variable in class moa.streams.generators.cd.GradualChangeGenerator
 
changeListeners - Variable in class moa.gui.ClassOptionEditComponent
listeners that listen to changes to the chosen option.
changeListeners - Variable in class moa.gui.ClassOptionWithNamesEditComponent
listeners that listen to changes to the chosen option.
check_in(double[]) - Method in class moa.cluster.Miniball
Adds a point to the list.
Skip action on null parameter.
checkBestAttrib(double, AutoExpandVector<AttributeClassObserver>, DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
checkForSplit(FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
checkMissing(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Checks if there is any instance with missing values.
checkMissing(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Checks if there is any missing value in the given instance.
checkRoot() - Method in class moa.classifiers.trees.FIMTDD
 
checkRoot() - Method in class moa.classifiers.trees.ORTO
 
children - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
children - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
children - Variable in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
children - Variable in class moa.classifiers.trees.ORTO.InnerNode
 
children - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
chooseRandomIndexBasedOnWeights(double[], Random) - Static method in class moa.core.MiscUtils
 
chosenObject - Variable in class moa.gui.ClassOptionSelectionPanel
 
chosenObject - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
 
chosenObjectEditor - Variable in class moa.gui.ClassOptionSelectionPanel
 
chosenObjectEditor - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
 
chosenOptionIndex - Variable in class moa.options.MultiChoiceOption
 
chunkSize - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
chunkSizeOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Chunk size.
chunkSizeOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Chunk size.
chunkSizeOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allow to define the training/testing chunk size.
cindex(Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.StatisticalCollection
 
classAccuracy - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
classChoiceBox - Variable in class moa.gui.ClassOptionSelectionPanel
 
classChoiceBox - Variable in class moa.gui.ClassOptionWithNamesSelectionPanel
 
classChoiceChanged(Object) - Method in class moa.gui.ClassOptionSelectionPanel
 
classChoiceChanged(Object) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
classCountsLeft - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
classCountsRight - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
classDistributions - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Class distributions.
classDistributions - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
classDistributions - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Class distributions.
classificationFunctions - Static variable in class moa.streams.generators.AgrawalGenerator
 
classificationFunctions - Static variable in class moa.streams.generators.SEAGenerator
 
classificationFunctions - Static variable in class moa.streams.generators.STAGGERGenerator
 
ClassificationMeasureCollection - Interface in moa.evaluation
Classification Measure Collection interface that it is used to not appear in clustering
ClassificationPerformanceEvaluator - Interface in moa.evaluation
Interface implemented by learner evaluators to monitor the results of the learning process.
ClassificationTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
ClassificationTabPanel() - Constructor for class moa.gui.ClassificationTabPanel
 
classifier - Variable in class moa.classifiers.active.ActiveClassifier
 
Classifier - Interface in moa.classifiers
Classifier interface for incremental classification models.
classifier - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
classifier - Variable in class moa.classifiers.meta.WEKAClassifier
 
classifier - Variable in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
classifierParameterOption - Variable in class moa.tasks.RunTasks
 
classifierPurposeString - Static variable in class moa.clusterers.CobWeb
 
classifierRandom - Variable in class moa.classifiers.AbstractClassifier
Random Generator used in randomizable learners
classifierRandom - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
classifierRandom - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
classifierTipText() - Method in class weka.classifiers.meta.MOA
Returns the tooltip displayed in the GUI.
classifyInstance(RandomTreeGenerator.Node, double[]) - Method in class moa.streams.generators.RandomTreeGenerator
 
classIndexOption - Variable in class moa.streams.ArffFileStream
 
classIndexOption - Variable in class moa.streams.clustering.FileStream
 
classLabel - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
 
classLabel - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
classNoiseFractionOption - Variable in class moa.streams.filters.AddNoiseFilter
 
ClassOption - Class in moa.options
Class option.
ClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.ClassOption
 
ClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.ClassOption
 
ClassOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a class option.
ClassOptionEditComponent(ClassOption) - Constructor for class moa.gui.ClassOptionEditComponent
 
classOptionNamesToPreparedObjects - Variable in class moa.options.AbstractOptionHandler
Dictionary with option texts and objects
ClassOptionSelectionPanel - Class in moa.gui
Creates a panel that displays the classes available, letting the user select a class.
ClassOptionSelectionPanel(Class<?>, String, String) - Constructor for class moa.gui.ClassOptionSelectionPanel
 
ClassOptionWithNames - Class in moa.options
 
ClassOptionWithNames(String, char, String, Class<?>, String, String[]) - Constructor for class moa.options.ClassOptionWithNames
 
ClassOptionWithNames(String, char, String, Class<?>, String, String, String[]) - Constructor for class moa.options.ClassOptionWithNames
 
ClassOptionWithNamesEditComponent - Class in moa.gui
 
ClassOptionWithNamesEditComponent(ClassOptionWithNames) - Constructor for class moa.gui.ClassOptionWithNamesEditComponent
 
ClassOptionWithNamesSelectionPanel - Class in moa.gui
 
ClassOptionWithNamesSelectionPanel(Class<?>, String, String, String[]) - Constructor for class moa.gui.ClassOptionWithNamesSelectionPanel
 
classToCLIString(Class<?>, Class<?>) - Static method in class moa.options.AbstractClassOption
Gets the command line interface text of the class.
classValues(List<? extends Instance>) - Static method in class moa.cluster.Clustering
 
classWeights - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
clean(int) - Method in class moa.evaluation.MeasureCollection
 
cleanUpKMeans(Clustering, ArrayList<CFCluster>) - Static method in class moa.clusterers.clustream.WithKmeans
Rearrange the k-means result into a set of CFClusters, cleaning up the redundancies.
clear() - Method in class moa.cluster.Miniball
Method clear: clears the ArrayList of the selection points.
Use it for starting a new selection list to calculate Bounding Sphere on
or to clear memory references to the list of objects.
Always use at the end of a Miniball use if you want to reuse later the Miniball object
clear() - Method in class moa.clusterers.clustree.ClusKernel
Remove all points from this cluster.
clear() - Method in class moa.clusterers.clustree.Entry
Clear the Entry.
clear() - Method in class moa.clusterers.clustree.Node
Clear this Node, which means that the noiseBuffer is cleared, that shallowClear is called upon all the entries of the node, that the split counter is set to zero and the node is set to not be a fake root.
clear() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
 
clear() - Method in class moa.core.AutoExpandVector
 
clear() - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
clear() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
clear() - Method in interface moa.recommender.rc.data.RecommenderData
 
clearEvents() - Method in class moa.gui.visualization.StreamOutlierPanel
 
clearPoints() - Method in class moa.gui.visualization.StreamOutlierPanel
 
cliChar - Variable in class moa.options.AbstractOption
Command line interface text of this option.
clipToInsideHrect(KDTreeNode, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Finds the closest point in the hyper rectangle to a given point.
cliStringToDouble(String) - Static method in class moa.options.FloatOption
 
cliStringToInt(String) - Static method in class moa.options.IntOption
 
cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.ClassOption
 
cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.ClassOptionWithNames
 
cliStringToObject(String, Class<?>, Option[]) - Static method in class moa.options.WEKAClassOption
 
cliStringToOptionArray(String, char, Option) - Static method in class moa.options.ListOption
 
clone() - Method in class moa.clusterers.streamkm.Point
 
close() - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
close() - Method in interface moa.recommender.rc.data.RecommenderData
 
closeDialog() - Method in class weka.gui.MOAClassOptionEditor
Closes the dialog.
closestPoint(Instance, Instances, int[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns the index of the closest point to the current instance.
ClusKernel - Class in moa.clusterers.clustree
Representation of an Entry in the tree
ClusKernel(double[], int) - Constructor for class moa.clusterers.clustree.ClusKernel
A constructor that makes a Kernel which just represents the given point.
ClusKernel(int) - Constructor for class moa.clusterers.clustree.ClusKernel
Constructor of the Cluster.
ClusKernel(ClusKernel) - Constructor for class moa.clusterers.clustree.ClusKernel
Instantiates a copy of the given cluster.
Cluster - Class in moa.cluster
 
Cluster() - Constructor for class moa.cluster.Cluster
 
clusterAddOption - Variable in class moa.clusterers.ClusterGenerator
 
Clusterer - Interface in moa.clusterers
 
clustererRandom - Variable in class moa.clusterers.AbstractClusterer
 
clustererRandom - Variable in class moa.clusterers.streamkm.BucketManager
 
clustererRandom - Variable in class moa.clusterers.streamkm.StreamKM
 
ClusterEvent - Class in moa.streams.clustering
 
ClusterEvent(Object, long, String, String) - Constructor for class moa.streams.clustering.ClusterEvent
 
ClusterEventListener - Interface in moa.streams.clustering
 
clusterEvents - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
ClusterGenerator - Class in moa.clusterers
 
ClusterGenerator() - Constructor for class moa.clusterers.ClusterGenerator
 
Clustering - Class in moa.cluster
 
Clustering() - Constructor for class moa.cluster.Clustering
 
Clustering(Cluster[]) - Constructor for class moa.cluster.Clustering
 
Clustering(List<? extends Instance>) - Constructor for class moa.cluster.Clustering
 
Clustering(ArrayList<DataPoint>, double, int) - Constructor for class moa.cluster.Clustering
 
Clustering(AutoExpandVector<Cluster>) - Constructor for class moa.cluster.Clustering
 
clustering - Variable in class moa.clusterers.AbstractClusterer
 
ClusteringAlgoPanel - Class in moa.gui.clustertab
 
ClusteringAlgoPanel() - Constructor for class moa.gui.clustertab.ClusteringAlgoPanel
 
ClusteringEvalPanel - Class in moa.gui.clustertab
 
ClusteringEvalPanel() - Constructor for class moa.gui.clustertab.ClusteringEvalPanel
Creates new form ClusteringEvalPanel
ClusteringSetupTab - Class in moa.gui.clustertab
 
ClusteringSetupTab() - Constructor for class moa.gui.clustertab.ClusteringSetupTab
Creates new form ClusteringSetupTab
ClusteringStream - Class in moa.streams.clustering
 
ClusteringStream() - Constructor for class moa.streams.clustering.ClusteringStream
 
ClusteringTabPanel - Class in moa.gui.clustertab
 
ClusteringTabPanel() - Constructor for class moa.gui.clustertab.ClusteringTabPanel
Creates new form ClusterTab
ClusteringVisualEvalPanel - Class in moa.gui.clustertab
 
ClusteringVisualEvalPanel() - Constructor for class moa.gui.clustertab.ClusteringVisualEvalPanel
Creates new form ClusteringEvalPanel
ClusteringVisualTab - Class in moa.gui.clustertab
 
ClusteringVisualTab() - Constructor for class moa.gui.clustertab.ClusteringVisualTab
Creates new form ClusteringVisualTab
ClusterPanel - Class in moa.gui.visualization
 
ClusterPanel(SphereCluster, Color, StreamPanel) - Constructor for class moa.gui.visualization.ClusterPanel
Creates new form ObjectPanel
clusterRemoveOption - Variable in class moa.clusterers.ClusterGenerator
 
Clustream - Class in moa.clusterers.clustream
Citation: CluStream: Charu C.
Clustream() - Constructor for class moa.clusterers.clustream.Clustream
 
ClustreamKernel - Class in moa.clusterers.clustream
 
ClustreamKernel(Instance, int, long, double, int) - Constructor for class moa.clusterers.clustream.ClustreamKernel
 
ClustreamKernel(ClustreamKernel, double, int) - Constructor for class moa.clusterers.clustream.ClustreamKernel
 
ClusTree - Class in moa.clusterers.clustree
Citation: ClusTree: Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl: The ClusTree: indexing micro-clusters for anytime stream mining.
ClusTree() - Constructor for class moa.clusterers.clustree.ClusTree
 
CMM - Class in moa.evaluation
 
CMM() - Constructor for class moa.evaluation.CMM
 
CMM_GTAnalysis - Class in moa.evaluation
 
CMM_GTAnalysis(Clustering, ArrayList<DataPoint>, boolean) - Constructor for class moa.evaluation.CMM_GTAnalysis
 
CMM_GTAnalysis.CMMPoint - Class in moa.evaluation
Wrapper class for data points to store CMM relevant attributes
CMM_GTAnalysis.CMMPoint(DataPoint, int) - Constructor for class moa.evaluation.CMM_GTAnalysis.CMMPoint
 
CMM_GTAnalysis.GTCluster - Class in moa.evaluation
Main class to model the new clusters that will be the output of the cluster analysis
CobWeb - Class in moa.clusterers
Class implementing the Cobweb and Classit clustering algorithms.
CobWeb() - Constructor for class moa.clusterers.CobWeb
 
col - Variable in class moa.gui.visualization.ClusterPanel
 
col - Variable in class moa.gui.visualization.OutlierPanel
 
col - Variable in class moa.gui.visualization.PointPanel
 
ColorArray - Class in moa.clusterers.macro
 
ColorArray() - Constructor for class moa.clusterers.macro.ColorArray
 
ColorObject - Class in moa.clusterers.macro
 
ColorObject(String, Color) - Constructor for class moa.clusterers.macro.ColorObject
 
colour - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
columnKappa - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
columnKappa - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
columnsStatistics - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
combinationOption - Variable in class moa.classifiers.meta.DACC
Combination functions: MAX and WVD (MAX leads to a faster reactivity to the change, WVD is more robust to noise)
combine(SphereCluster) - Method in class moa.cluster.SphereCluster
 
combSort11(double[], int[]) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
sorts the two given arrays.
compareTo(AttributeSplitSuggestion) - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
compareTo(DACC.Pair) - Method in class moa.classifiers.meta.DACC.Pair
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
compareTo(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
compareTo(MCODBase.EventItem) - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
compareTo(MicroCluster) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
compareTo(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
compareTo(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
compareTo(SimpleCODBase.EventItem) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
compareTo(StreamObj) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
compareTo(Pair<T, U>) - Method in class moa.recommender.rc.utils.Pair
 
componentHidden(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentHidden(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentHidden(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
componentMoved(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentMoved(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentMoved(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
componentResized(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentResized(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentResized(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
componentShown(ComponentEvent) - Method in class moa.gui.outliertab.OutlierVisualTab
 
componentShown(ComponentEvent) - Method in class moa.gui.visualization.StreamOutlierPanel
 
componentShown(ComponentEvent) - Method in class moa.gui.visualization.StreamPanel
 
ComposedSplitFunction<DATA> - Class in moa.clusterers.outliers.utils.mtree
A split function that is defined by composing a promotion function and a partition function.
ComposedSplitFunction(PromotionFunction<DATA>, PartitionFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.ComposedSplitFunction
The constructor of a SplitFunction composed by a PromotionFunction and a PartitionFunction.
compress(long) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
compressBuckets() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
computeAnomalySupervised(RuleClassification, int, Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
computeAnomalyUnsupervised(RuleClassification, int, Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
computeBandBoundaries(long) - Static method in class moa.core.GreenwaldKhannaQuantileSummary
 
computeBranchSplitMerits(double[][]) - Static method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
computeCandidateWeight(Classifier, Instances, int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Computes the weight of a candidate classifier.
computeEntropy(double[]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
computeEntropy(double[][]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
computeEntropy(double[]) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterionMultilabel
 
computeError(Instance) - Method in class moa.classifiers.rules.core.Rule
 
computeError(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
computeError(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
computeGini(double[], double) - Static method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
computeGini(double[]) - Static method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
ComputeHoeffdingBound(double, double, double) - Method in class moa.classifiers.rules.RuleClassifier
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.FIMTDD
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.HoeffdingOptionTree
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.HoeffdingTree
 
computeHoeffdingBound(double, double, double) - Static method in class moa.classifiers.trees.ORTO
 
computeMean(double, int) - Method in class moa.classifiers.rules.RuleClassifier
 
computeMeritOfExistingSplit(SplitCriterion, double[]) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
computeMse(Classifier, Instances) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Computes the MSE of a learner for a given chunk of examples.
computeMseR() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Computes the MSEr threshold.
computeMseR() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Computes the MSEr threshold.
computeMseR() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Computes the MSEr threshold.
computeProbability(double, double, double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
computeProbability(double, double, double) - Method in class moa.classifiers.rules.RuleClassifier
 
computeSD(double[]) - Static method in class moa.classifiers.core.splitcriteria.SDRSplitCriterion
 
computeSD(double[]) - Static method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
computeSD(double, double, long) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
computeSD(double, double, int) - Method in class moa.classifiers.rules.functions.Perceptron
 
computeSD(double, double, int) - Method in class moa.classifiers.rules.RuleClassifier
 
computeSD(double, double, double) - Method in class moa.classifiers.trees.FIMTDD
 
computeWeight(Classifier, Instances) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Computes the weight of a given classifie.
computeWeight(int, Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Computes the weight of a learner before training a given example.
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
computeWeightedVote() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Computes the weighted vote.
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
 
computeWeightedVote() - Method in class moa.classifiers.rules.core.voting.UniformWeightedVote
 
ConceptDriftGenerator - Interface in moa.streams.generators.cd
 
ConceptDriftMainTask - Class in moa.tasks
 
ConceptDriftMainTask() - Constructor for class moa.tasks.ConceptDriftMainTask
 
ConceptDriftRealStream - Class in moa.streams
Stream generator that adds concept drift to examples in a stream with different classes and attributes.
ConceptDriftRealStream() - Constructor for class moa.streams.ConceptDriftRealStream
 
ConceptDriftStream - Class in moa.streams
Stream generator that adds concept drift to examples in a stream.
ConceptDriftStream() - Constructor for class moa.streams.ConceptDriftStream
 
ConceptDriftTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
ConceptDriftTabPanel() - Constructor for class moa.gui.ConceptDriftTabPanel
 
Conditional - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
confidenceChoiceOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
configureTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
configureTaskButton - Variable in class moa.gui.TaskManagerPanel
 
confKOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
connectivity - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
the connectivity of the point to its cluster
constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.AMRulesRegressor
 
constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.core.Rule.Builder
 
constantLearningRatioDecayOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
contains(int, int) - Method in class moa.gui.visualization.ClusterPanel
 
contains(int, int) - Method in class moa.gui.visualization.OutlierPanel
 
contextIsCompatible(InstancesHeader, InstancesHeader) - Static method in class moa.classifiers.AbstractClassifier
Returns if two contexts or headers of instances are compatible.

Two contexts are compatible if they follow the following rules:
Rule 1: num classes can increase but never decrease
Rule 2: num attributes can increase but never decrease
Rule 3: num nominal attribute values can increase but never decrease
Rule 4: attribute types must stay in the same order (although class can move; is always skipped over)

Attribute names are free to change, but should always still represent the original attributes.
contextIsCompatible(InstancesHeader, InstancesHeader) - Static method in class moa.clusterers.AbstractClusterer
 
converter - Variable in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
Converter - Class in moa.core.utils
Converter.
Converter() - Constructor for class moa.core.utils.Converter
 
Converter(int) - Constructor for class moa.core.utils.Converter
 
convertX(double) - Method in class moa.gui.LineGraphViewPanel.PlotLine
 
convertY(double) - Method in class moa.gui.LineGraphViewPanel.PlotLine
 
copy() - Method in class moa.AbstractMOAObject
 
copy(MOAObject) - Static method in class moa.AbstractMOAObject
This method produces a copy of an object.
copy() - Method in class moa.classifiers.AbstractClassifier
 
copy() - Method in interface moa.classifiers.Classifier
Produces a copy of this classifier.
copy() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Produces a copy of this change detector method
copy() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Produces a copy of this drift detection method
copy() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Creates a copy of the object
copy() - Method in class moa.clusterers.AbstractClusterer
 
copy() - Method in interface moa.clusterers.Clusterer
 
copy() - Method in class moa.clusterers.denstream.MicroCluster
 
copy() - Method in class moa.core.AutoExpandVector
 
copy() - Method in interface moa.MOAObject
This method produces a copy of this object.
copy() - Method in class moa.options.AbstractOption
 
copy() - Method in class moa.options.AbstractOptionHandler
 
copy() - Method in interface moa.options.Option
Gets a copy of this option
copy() - Method in interface moa.options.OptionHandler
This method produces a copy of this object.
copy() - Method in class moa.recommender.rc.utils.DenseVector
 
copy() - Method in class moa.recommender.rc.utils.SparseVector
 
copy() - Method in class moa.recommender.rc.utils.Vector
 
copyClipBoardConfiguration() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.RegressionTaskManagerPanel
 
copyClipBoardConfiguration() - Method in class moa.gui.TaskManagerPanel
 
copyObject(Serializable) - Static method in class moa.core.SerializeUtils
 
copyrightNotice - Static variable in class moa.core.Globals
 
copyStatistics(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.Node
 
coresetsize - Variable in class moa.clusterers.streamkm.StreamKM
 
correctlyClassifies(Instance) - Method in class moa.classifiers.AbstractClassifier
 
correctlyClassifies(Instance) - Method in interface moa.classifiers.Classifier
Gets whether this classifier correctly classifies an instance.
correctlyInitialized() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Checks whether an object of this class has been correctly initialized.
CorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
costLabeling - Variable in class moa.classifiers.active.ActiveClassifier
 
costLabelingRandom - Variable in class moa.classifiers.active.ActiveClassifier
 
costOfPoint(int, Point[]) - Method in class moa.clusterers.streamkm.Point
Computes the cost of this point with the given array of centres centres[] (of size k)
costOfPointToCenter(Point) - Method in class moa.clusterers.streamkm.Point
Computes the cost of this point with centre centre
count_after - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
count_after - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
count_after - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
count_after - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
count_before - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
countLeaves() - Method in class moa.classifiers.trees.FIMTDD.Node
 
countLeaves() - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
CountPrecNeighs(Long) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
countRatingsItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
countRatingsItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
countRatingsUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
countRatingsUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
createCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
Creates the custom editor.
createLabelledOptionComponentListPanel(Option[], List<OptionEditComponent>) - Static method in class moa.gui.OptionsConfigurationPanel
 
createNewClassifier(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Processes a chunk.
createRule(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
createTemplate(Instances) - Method in class moa.core.utils.Converter
 
createWekaClassifier(String[]) - Method in class moa.classifiers.meta.WEKAClassifier
 
cumulativeSum - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
curItemID() - Method in interface moa.recommender.dataset.Dataset
 
curItemID() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
curItemID() - Method in class moa.recommender.dataset.impl.JesterDataset
 
curItemID() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
curRating() - Method in interface moa.recommender.dataset.Dataset
 
curRating() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
curRating() - Method in class moa.recommender.dataset.impl.JesterDataset
 
curRating() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
currentActivityDescription - Variable in class moa.tasks.StandardTaskMonitor
 
currentActivityFractionComplete - Variable in class moa.tasks.StandardTaskMonitor
 
currentChunk - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Current chunk of instances.
currentChunk - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
currentLength() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Gets the current length of the list.
currentList - Variable in class moa.options.ListOption
 
currentStatus - Variable in class moa.tasks.TaskThread
 
currentTask - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
currentTask - Variable in class moa.gui.RegressionTaskManagerPanel
 
currentTask - Variable in class moa.gui.TaskManagerPanel
 
currentVal - Variable in class moa.options.FloatOption
 
currentVal - Variable in class moa.options.IntOption
 
currentVal - Variable in class moa.options.StringOption
 
currentValue - Variable in class moa.options.AbstractClassOption
The current object
currentWindow - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Current window of instance class values.
curUserID() - Method in interface moa.recommender.dataset.Dataset
 
curUserID() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
curUserID() - Method in class moa.recommender.dataset.impl.JesterDataset
 
curUserID() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
curve - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
CusumDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in Cusum
CusumDM() - Constructor for class moa.classifiers.core.driftdetection.CusumDM
 
cut_point - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
cut_point - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
cut_point - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
cutoffOption - Variable in class moa.clusterers.CobWeb
 

D

DACC - Class in moa.classifiers.meta
Dynamic Adaptation to Concept Changes.
DACC() - Constructor for class moa.classifiers.meta.DACC
 
DACC.Pair - Class in moa.classifiers.meta
This helper class is used to sort an array of pairs of integers: val and index.
DACC.Pair(double, int) - Constructor for class moa.classifiers.meta.DACC.Pair
 
data - Variable in class moa.clusterers.clustree.Entry
The actual entry data.
data - Variable in class moa.clusterers.outliers.utils.mtree.MTree.ResultItem
A nearest-neighbor.
data - Variable in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
data - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
DataObject - Class in moa.clusterers.outliers.AnyOut.util
This object encapsulates a data point.
DataObject(int, Instance) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataObject
Standard constructor for DataObject.
dataOption - Variable in class moa.recommender.predictor.BaselinePredictor
 
dataOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
DataPoint - Class in moa.gui.visualization
 
DataPoint(Instance, Integer) - Constructor for class moa.gui.visualization.DataPoint
 
dataset - Variable in class moa.classifiers.meta.RandomRules
 
DataSet - Class in moa.clusterers.outliers.AnyOut.util
A set of DataObjects.
DataSet(int) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataSet
Creates an empty set.
DataSet(DataObject) - Constructor for class moa.clusterers.outliers.AnyOut.util.DataSet
Creates a Set with only the given object.
Dataset - Interface in moa.recommender.dataset
 
datasetOption - Variable in class moa.tasks.EvaluateOnlineRecommender
 
DBScan - Class in moa.clusterers.macro.dbscan
 
DBScan(Clustering, double, int) - Constructor for class moa.clusterers.macro.dbscan.DBScan
 
DDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in DDM method of Joao Gama SBIA 2004.
DDM() - Constructor for class moa.classifiers.core.driftdetection.DDM
 
DDM_INCONTROL_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
DDM_OUTCONTROL_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
DDM_WARNING_LEVEL - Static variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
ddmLevel - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
deactivateAllLeaves() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
deactivateAllLeaves() - Method in class moa.classifiers.trees.HoeffdingTree
 
deactivateLearningNode(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
deactivateLearningNode(HoeffdingOptionTree.ActiveLearningNode, HoeffdingOptionTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
deactivateLearningNode(HoeffdingTree.ActiveLearningNode, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
debug(String, int) - Method in class moa.classifiers.rules.AbstractAMRules
Print to console
debug(String, int) - Method in class moa.classifiers.rules.core.Rule
 
debug(String, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
debug - Variable in class moa.evaluation.CMM
enable/disable debug mode
debuganomaly(Instance, double, double, double) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
decay_rate - Variable in class moa.gui.visualization.ClusterPanel
 
decay_rate - Variable in class moa.gui.visualization.OutlierPanel
 
decayHorizonOption - Variable in class moa.streams.clustering.ClusteringStream
 
decayRate - Variable in class moa.gui.visualization.PointPanel
 
decayThreshold - Variable in class moa.gui.visualization.PointPanel
 
decayThresholdOption - Variable in class moa.streams.clustering.ClusteringStream
 
decisionNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
decisionNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
 
DecisionStump - Class in moa.classifiers.trees
Decision trees of one level.
Parameters:
DecisionStump() - Constructor for class moa.classifiers.trees.DecisionStump
 
decrCutPoint - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
default_color - Variable in class moa.gui.visualization.ClusterPanel
 
default_color - Variable in class moa.gui.visualization.OutlierPanel
 
default_color - Variable in class moa.gui.visualization.PointPanel
 
DEFAULT_MIN_NODE_CAPACITY - Static variable in class moa.clusterers.outliers.utils.mtree.MTree
The default minimum capacity of nodes in an M-Tree, when not specified in the constructor call.
defaultCLIString - Variable in class moa.options.AbstractClassOption
The default command line interface text.
defaultFileExtension - Variable in class moa.options.FileOption
 
defaultList - Variable in class moa.options.ListOption
 
defaultOptionIndex - Variable in class moa.options.MultiChoiceOption
 
defaultRule - Variable in class moa.classifiers.rules.AbstractAMRules
 
defaultVal - Variable in class moa.options.FloatOption
 
defaultVal - Variable in class moa.options.IntOption
 
defaultVal - Variable in class moa.options.StringOption
 
defineDataFormat() - Method in class weka.datagenerators.classifiers.classification.MOA
Initializes the format for the dataset produced.
delay - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Delay in detecting change
delay - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
deleteElement() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
deleteMergeableTupleMostFull() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
deleteNode(HoeffdingTree.Node, int) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
deleteScriptsOption - Variable in class moa.tasks.Plot
Determines whether to delete gnuplot scripts after plotting.
deleteSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
deleteSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
deleteTaskButton - Variable in class moa.gui.TaskManagerPanel
 
deleteTuple(int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
deleteTupleMostFull() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
DELTA - Static variable in class moa.classifiers.core.driftdetection.ADWIN
 
delta - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
deltaAdwinOption - Variable in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
deltaAdwinOption - Variable in class moa.classifiers.meta.LeveragingBag
 
deltaAdwinOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
deltaAdwinOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
deltaOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
 
deltaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
deltaOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
deltaSeqDrift2Option - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
deltaWarningOption - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
DenseMicroCluster - Class in moa.clusterers.macro.dbscan
 
DenseMicroCluster(CFCluster) - Constructor for class moa.clusterers.macro.dbscan.DenseMicroCluster
 
DenseVector - Class in moa.recommender.rc.utils
 
DenseVector() - Constructor for class moa.recommender.rc.utils.DenseVector
 
DenseVector(ArrayList<Double>) - Constructor for class moa.recommender.rc.utils.DenseVector
 
DenseVector.DenseVectorIterator - Class in moa.recommender.rc.utils
 
DenseVector.DenseVectorIterator() - Constructor for class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
densityRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Gets the text that describes the condition of a branch.
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
describeConditionForBranch(int, InstancesHeader) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
describeSubtree(FIMTDD, StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
describeSubtree(FIMTDD, StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.Node
 
describeSubtree(FIMTDD, StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
describeSubtree(HoeffdingOptionTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
describeSubtree(HoeffdingOptionTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
describeSubtree(HoeffdingTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
describeSubtree(HoeffdingTree, StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
detectMeanIncrement(HDDM_W_Test.SampleInfo, HDDM_W_Test.SampleInfo, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
determineAssignments(KDTreeNode, Instances, int[], int[], double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Assigns instances to the current centers called candidates.
determineClass(double, double, int, int, int, int, double, int, double) - Method in interface moa.streams.generators.AgrawalGenerator.ClassFunction
 
determineClass(double, double, double) - Method in interface moa.streams.generators.SEAGenerator.ClassFunction
 
determineClass(int, int, int) - Method in interface moa.streams.generators.STAGGERGenerator.ClassFunction
 
determineClusterCentreKMeans(int, Point[]) - Method in class moa.clusterers.streamkm.Point
Computes the index of the centre nearest to this point with the given array of centres centres[] (of size k)
determineNumberOfClusters() - Method in class moa.clusterers.CobWeb
determines the number of clusters if necessary
difference(int, double, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Computes the difference between two given attribute values.
dimension() - Method in class moa.cluster.Clustering
 
dimension - Variable in class moa.clusterers.streamkm.StreamKM
 
dimensions() - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
dimensions() - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
dimensions() - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
dimensions() - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
dimensions() - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
dimensions() - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunctions.EuclideanCoordinate
The number of dimensions.
direction - Variable in class moa.gui.visualization.ClusterPanel
 
directionForBestTree() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
disableAttribute(int) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
disableAttribute(int) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
disableAttribute(int) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
 
disableAttribute(int) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
disableAttribute(int) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
 
disableChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.Node
 
disableChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
disableRefresh() - Method in class moa.gui.PreviewPanel
 
disableUpdates - Variable in class moa.recommender.rc.data.AbstractRecommenderData
 
disableUpdates(boolean) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
disableUpdates(boolean) - Method in interface moa.recommender.rc.data.RecommenderData
 
discardModel(int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Removes the classifier at a given index from the model, thus decreasing the models size.
discardModel(int) - Method in class moa.classifiers.meta.DACC
Resets a classifier in the ensemble
discardModel(int) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
discoverOptionsViaReflection() - Method in class moa.options.AbstractOptionHandler
Gets the options of this class via reflection.
DiscreteAttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
Interface for observing the class data distribution for a discrete (nominal) attribute.
distance(Instance, Instance) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Calculates the distance between two instances.
distance(Instance, Instance, double) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Calculates the distance between two instances.
distance(Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Calculates the distance between two instances.
distance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
the distance of this element.
distance(Instance, Instance) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Calculates the distance between two instances.
distance(Instance, Instance, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Calculates the distance between two instances.
distance - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
 
distance - Variable in class moa.clusterers.outliers.utils.mtree.MTree.ResultItem
The distance from the nearest-neighbor to the query data object parameter.
DistanceFunction - Interface in moa.classifiers.lazy.neighboursearch
Interface for any class that can compute and return distances between two instances.
DistanceFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
An object that can calculate the distance between two data objects.
distanceFunction - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
DistanceFunctions - Class in moa.clusterers.outliers.utils.mtree
Some pre-defined implementations of distance functions.
DistanceFunctions.EuclideanCoordinate - Interface in moa.clusterers.outliers.utils.mtree
An interface to represent coordinates in Euclidean spaces.
distanceFunctionTipText() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the tip text for this property.
distanceToHrect(KDTreeNode, Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the distance between a point and an hyperrectangle.
distributionForInstance(Instance) - Method in class weka.classifiers.meta.MOA
Predicts the class memberships for a given instance.
dloss(double) - Method in class moa.classifiers.functions.SGD
 
dloss(double) - Method in class moa.classifiers.functions.SGDMultiClass
 
dloss(double) - Method in class moa.classifiers.functions.SPegasos
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateClustering
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateConceptDrift
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateInterleavedChunks
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModel
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateModelRegression
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluateOnlineRecommender
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequential
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.EvaluatePrequentialRegression
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModel
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.LearnModelRegression
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MainTask
This method performs this task.
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MeasureStreamSpeed
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.Plot
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.RunStreamTasks
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.RunTasks
 
doMainTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.WriteStreamToARFFFile
 
doNaiveBayesPrediction(Instance, DoubleVector, AutoExpandVector<AttributeClassObserver>) - Static method in class moa.classifiers.bayes.NaiveBayes
 
doNaiveBayesPredictionLog(Instance, DoubleVector, AutoExpandVector<AttributeClassObserver>, AutoExpandVector<AttributeClassObserver>) - Static method in class moa.classifiers.bayes.NaiveBayes
 
dontNormalizeTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns the tip text for this property.
DoTask - Class in moa
Class for running a MOA task from the command line.
DoTask() - Constructor for class moa.DoTask
 
doTask() - Method in class moa.tasks.AbstractTask
 
doTask(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
 
doTask() - Method in interface moa.tasks.Task
This method performs this task, when TaskMonitor and ObjectRepository are no needed.
doTask(TaskMonitor, ObjectRepository) - Method in interface moa.tasks.Task
This method performs this task.
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
This method performs this task.
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.CacheShuffledStream
 
doTaskImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.MainTask
 
dotProd(Instance, DoubleVector, int) - Static method in class moa.classifiers.functions.SGD
 
dotProd(Instance, DoubleVector, int) - Static method in class moa.classifiers.functions.SGDMultiClass
 
dotProd(Instance, double[], int) - Static method in class moa.classifiers.functions.SPegasos
 
dotProduct(Vector) - Method in class moa.recommender.rc.utils.Vector
 
DOUBLE_ADD - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
DOUBLE_DIV - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
DOUBLE_MULT - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
doubleAddition() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a double addition has been performed by the tree.
doubleAddition(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of double additions have been performed.
doubleAddition() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleAddition(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleDivision() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a double division has been performed by the tree.
doubleDivision(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of double divisions have been performed.
doubleDivision() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleDivision(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleMultiplication() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a double multiplicaton has been performed by the tree.
doubleMultiplication(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of double multiplications have been performed.
doubleMultiplication() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleMultiplication(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
doubleToCLIString(double) - Static method in class moa.options.FloatOption
 
doubleToString(double, int) - Static method in class moa.core.StringUtils
 
doubleToString(double, int, int) - Static method in class moa.core.StringUtils
 
DoubleVector - Class in moa.core
Vector of double numbers with some utilities.
DoubleVector() - Constructor for class moa.core.DoubleVector
 
DoubleVector(double[]) - Constructor for class moa.core.DoubleVector
 
DoubleVector(DoubleVector) - Constructor for class moa.core.DoubleVector
 
downheap() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
performs downheap operation for the heap to maintian its properties.
drawClusterings(List<DataPoint>, List<DataPoint>) - Method in class moa.gui.visualization.RunVisualizer
 
drawEvent(OutlierEvent, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
drawGTClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
 
drawMacroClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
 
drawMicroClustering(Clustering, List<DataPoint>, Color) - Method in class moa.gui.visualization.StreamPanel
 
drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.ClusterPanel
 
drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.OutlierPanel
 
drawOnCanvas(Graphics2D) - Method in class moa.gui.visualization.PointPanel
 
drawOutliers(Vector<MyBaseOutlierDetector.Outlier>, Color) - Method in class moa.gui.visualization.StreamOutlierPanel
 
drawPoint(DataPoint, boolean, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
drawPoint(DataPoint) - Method in class moa.gui.visualization.StreamPanel
 
driftConfidence - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
driftConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
driftConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
driftDetectionMethod - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
driftDetectionMethod - Variable in class moa.learners.ChangeDetectorLearner
 
DriftDetectionMethodClassifier - Class in moa.classifiers.drift
Class for handling concept drift datasets with a wrapper on a classifier.
DriftDetectionMethodClassifier() - Constructor for class moa.classifiers.drift.DriftDetectionMethodClassifier
 
driftDetectionMethodOption - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
driftDetectionMethodOption - Variable in class moa.learners.ChangeDetectorLearner
 
DriftDetectionOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
driftInstance - Variable in class moa.streams.ConceptDriftRealStream
 
driftStream - Variable in class moa.streams.ConceptDriftRealStream
 
driftStream - Variable in class moa.streams.ConceptDriftStream
 
driftstreamOption - Variable in class moa.streams.ConceptDriftRealStream
 
driftstreamOption - Variable in class moa.streams.ConceptDriftStream
 
dumpFileOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
dumpFileOption - Variable in class moa.tasks.EvaluateClustering
 
dumpFileOption - Variable in class moa.tasks.EvaluateConceptDrift
 
dumpFileOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the output file name and location.
dumpFileOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
dumpFileOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequential
 
dumpFileOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 

E

EDDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in EDDM method of Manuel Baena et al.
EDDM() - Constructor for class moa.classifiers.core.driftdetection.EDDM
 
editButton - Variable in class moa.gui.ClassOptionEditComponent
 
editButton - Variable in class moa.gui.ClassOptionWithNamesEditComponent
 
editButton - Variable in class moa.gui.WEKAClassOptionEditComponent
 
editComponents - Variable in class moa.gui.clustertab.ClusteringAlgoPanel
 
editComponents - Variable in class moa.gui.OptionsConfigurationPanel
 
editComponents - Variable in class moa.gui.outliertab.OutlierAlgoPanel
 
editedOption - Variable in class moa.gui.ClassOptionEditComponent
 
editedOption - Variable in class moa.gui.ClassOptionWithNamesEditComponent
 
editedOption - Variable in class moa.gui.FileOptionEditComponent
 
editedOption - Variable in class moa.gui.FlagOptionEditComponent
 
editedOption - Variable in class moa.gui.FloatOptionEditComponent
 
editedOption - Variable in class moa.gui.IntOptionEditComponent
 
editedOption - Variable in class moa.gui.MultiChoiceOptionEditComponent
 
editedOption - Variable in class moa.gui.StringOptionEditComponent
 
editedOption - Variable in class moa.gui.WEKAClassOptionEditComponent
 
editObject() - Method in class moa.gui.ClassOptionEditComponent
 
editObject() - Method in class moa.gui.ClassOptionWithNamesEditComponent
 
editObject() - Method in class moa.gui.WEKAClassOptionEditComponent
 
EMProjectedClustering - Class in moa.clusterers.outliers.AnyOut.util
Implements clustering via Expectation Maximization but return a clear partitioning of the data, i.e.
EMProjectedClustering() - Constructor for class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
 
emptyBuffer(long, double) - Method in class moa.clusterers.clustree.Entry
Clear the buffer in this entry and return a copy.
EMTopDownTreeBuilder - Class in moa.clusterers.outliers.AnyOut.util
 
EMTopDownTreeBuilder() - Constructor for class moa.clusterers.outliers.AnyOut.util.EMTopDownTreeBuilder
 
enableClassMerge - Variable in class moa.evaluation.CMM
enable/disable class merge (main feature of ground truth analysis)
enableModelError - Variable in class moa.evaluation.CMM
enable/disable model error when enabled errors that are caused by the underling cluster model will not be counted
enablePreciseTiming() - Static method in class moa.core.TimingUtils
 
enableRefresh() - Method in class moa.gui.PreviewPanel
 
enforceMemoryLimit() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Checks if the memory limit is exceeded and if so prunes the classifiers in the ensemble.
enforceMemoryLimit() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Checks if the memory limit is exceeded and if so prunes the classifiers in the ensemble.
enforceTrackerLimit() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
enforceTrackerLimit() - Method in class moa.classifiers.trees.HoeffdingTree
 
ensemble - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
ensemble - Variable in class moa.classifiers.meta.DACC
Ensemble of classifiers
ensemble - Variable in class moa.classifiers.meta.LeveragingBag
 
ensemble - Variable in class moa.classifiers.meta.LimAttClassifier
 
ensemble - Variable in class moa.classifiers.meta.OCBoost
 
ensemble - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Ensemble classifiers.
ensemble - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
ensemble - Variable in class moa.classifiers.meta.OzaBag
 
ensemble - Variable in class moa.classifiers.meta.OzaBagAdwin
 
ensemble - Variable in class moa.classifiers.meta.OzaBoost
 
ensemble - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
ensemble - Variable in class moa.classifiers.meta.RandomRules
 
ensemble - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
ensembleAges - Variable in class moa.classifiers.meta.DACC
Age of classifiers (to compare with maturity age)
EnsembleDriftDetectionMethods - Class in moa.classifiers.core.driftdetection
Ensemble Drift detection method
EnsembleDriftDetectionMethods() - Constructor for class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
ensembleSizeOption - Variable in class moa.classifiers.meta.LeveragingBag
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OCBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBag
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBagAdwin
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBoost
 
ensembleSizeOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
ensembleSizeOption - Variable in class moa.classifiers.meta.RandomRules
 
ensembleWeights - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
ensembleWeights - Variable in class moa.classifiers.meta.DACC
Weights of classifiers
ensembleWeights - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
ensembleWindows - Variable in class moa.classifiers.meta.DACC
Evaluation windows (recent classification errors)
entropy(DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
EntropyCollection - Class in moa.evaluation
 
EntropyCollection() - Constructor for class moa.evaluation.EntropyCollection
 
Entry - Class in moa.clusterers.clustree
 
Entry(int) - Constructor for class moa.clusterers.clustree.Entry
Constructor for the entry.
Entry(int, Node, long, Entry, Node) - Constructor for class moa.clusterers.clustree.Entry
Constructor that creates an Entry that points to the given node.
Entry(int, ClusKernel, long) - Constructor for class moa.clusterers.clustree.Entry
Constructuctor that creates an Entry with an empty buffer and the data given by the Kernel.
Entry(int, ClusKernel, long, Entry, Node) - Constructor for class moa.clusterers.clustree.Entry
extended constructor with containerNode and parentEntry
Entry(Entry) - Constructor for class moa.clusterers.clustree.Entry
Copy constructor.
entryToString(int) - Method in class moa.evaluation.LearningCurve
 
enumerateMeasures() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns an enumeration of the additional measure names.
EPSILON - Static variable in class moa.clusterers.clustree.ClusKernel
Numeric epsilon.
epsilonOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
equals(Object) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
equals(Object) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
equals(Object) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
equals(Object) - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
equals(Object) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
equals(Object) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
equalsPassesTest - Variable in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
equivIndexSizeOption - Variable in class moa.classifiers.meta.ADACC
Threshold for concept equivalence
ERR - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
The floating point error to tolerate in finding the widest rectangular side.
error - Variable in class moa.classifiers.meta.OzaBagASHT
 
ErrorChange - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
ErrorChange - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
errorPrediction - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
errors - Variable in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
errorSum - Variable in class moa.classifiers.rules.functions.TargetMean
 
ErrorWeightedVote - Interface in moa.classifiers.rules.core.voting
ErrorWeightedVote interface for weighted votes based on estimates of errors.
estimatedRemainingInstances() - Method in class moa.streams.ArffFileStream
 
estimatedRemainingInstances() - Method in class moa.streams.CachedInstancesStream
 
estimatedRemainingInstances() - Method in class moa.streams.clustering.FileStream
 
estimatedRemainingInstances() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
estimatedRemainingInstances() - Method in class moa.streams.ConceptDriftRealStream
 
estimatedRemainingInstances() - Method in class moa.streams.ConceptDriftStream
 
estimatedRemainingInstances() - Method in class moa.streams.FilteredStream
 
estimatedRemainingInstances() - Method in class moa.streams.filters.AbstractStreamFilter
 
estimatedRemainingInstances() - Method in class moa.streams.filters.CacheFilter
 
estimatedRemainingInstances() - Method in class moa.streams.generators.AgrawalGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.HyperplaneGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.LEDGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.RandomRBFGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.RandomTreeGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.SEAGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.STAGGERGenerator
 
estimatedRemainingInstances() - Method in class moa.streams.generators.WaveformGenerator
 
estimatedRemainingInstances() - Method in interface moa.streams.InstanceStream
Gets the estimated number of remaining instances in this stream
estimatedRemainingInstances() - Method in class moa.streams.MultiFilteredStream
 
estimatedWeight_LessThan_EqualTo_GreaterThan_Value(double) - Method in class moa.core.GaussianEstimator
 
estimateModelByteSizes() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
estimateModelByteSizes() - Method in class moa.classifiers.trees.HoeffdingTree
 
estimation - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Prediction for the next value based in previous seen values
estimation - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator.Estimator
 
estimation() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator.Estimator
 
estimation - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
 
estimation() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
 
estimationErrorWeight - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
estimationErrorWeight - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
EUCLIDEAN - Static variable in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
A distance function object that calculates the distance between two euclidean coordinates.
euclidean(DistanceFunctions.EuclideanCoordinate, DistanceFunctions.EuclideanCoordinate) - Static method in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
Calculates the distance between two euclidean coordinates.
EUCLIDEAN_DOUBLE_LIST - Static variable in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
A distance function object that calculates the distance between two coordinates represented by lists of Doubles.
EUCLIDEAN_INTEGER_LIST - Static variable in class moa.clusterers.outliers.utils.mtree.DistanceFunctions
A distance function object that calculates the distance between two coordinates represented by lists of Integers.
EuclideanDistance - Class in moa.classifiers.lazy.neighboursearch
Implementing Euclidean distance (or similarity) function.

One object defines not one distance but the data model in which the distances between objects of that data model can be computed.

Attention: For efficiency reasons the use of consistency checks (like are the data models of the two instances exactly the same), is low.

For more information, see:

Wikipedia.
EuclideanDistance() - Constructor for class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Constructs an Euclidean Distance object, Instances must be still set.
EuclideanDistance(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Constructs an Euclidean Distance object and automatically initializes the ranges.
evaluate(Instance) - Method in class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
evaluate(Instance) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
evaluate(Instance) - Method in interface moa.classifiers.rules.core.Predicate
 
evaluate(Instance) - Method in class moa.classifiers.rules.nodes.RuleSplitNode
 
evaluate(Instance) - Method in class moa.classifiers.rules.Predicates
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.Accuracy
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.ChangeDetectionMeasures
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.CMM
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.EntropyCollection
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.F1
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.General
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.MeasureCollection
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.OutlierPerformance
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.SilhouetteCoefficient
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.SSQ
 
evaluateClustering(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.StatisticalCollection
 
EvaluateClustering - Class in moa.tasks
Task for evaluating a clusterer on a stream.
EvaluateClustering() - Constructor for class moa.tasks.EvaluateClustering
 
evaluateClusteringPerformance(Clustering, Clustering, ArrayList<DataPoint>) - Method in class moa.evaluation.MeasureCollection
 
EvaluateConceptDrift - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluateConceptDrift() - Constructor for class moa.tasks.EvaluateConceptDrift
 
EvaluateInterleavedChunks - Class in moa.tasks
 
EvaluateInterleavedChunks() - Constructor for class moa.tasks.EvaluateInterleavedChunks
 
EvaluateInterleavedTestThenTrain - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluateInterleavedTestThenTrain() - Constructor for class moa.tasks.EvaluateInterleavedTestThenTrain
 
evaluateMicroClusteringOption - Variable in class moa.clusterers.AbstractClusterer
 
EvaluateModel - Class in moa.tasks
Task for evaluating a static model on a stream.
EvaluateModel() - Constructor for class moa.tasks.EvaluateModel
 
EvaluateModel(Classifier, InstanceStream, ClassificationPerformanceEvaluator, int) - Constructor for class moa.tasks.EvaluateModel
 
EvaluateModelRegression - Class in moa.tasks
Task for evaluating a static model on a stream.
EvaluateModelRegression() - Constructor for class moa.tasks.EvaluateModelRegression
 
EvaluateModelRegression(Classifier, InstanceStream, ClassificationPerformanceEvaluator, int) - Constructor for class moa.tasks.EvaluateModelRegression
 
evaluateMultiLabel(ArrayList<double[]>, ArrayList<int[]>, double) - Static method in class moa.core.utils.EvalUtils
Calculate Performance Measures.
EvaluateOnlineRecommender - Class in moa.tasks
Test for evaluating a recommender by training and periodically testing on samples from a rating dataset.
EvaluateOnlineRecommender() - Constructor for class moa.tasks.EvaluateOnlineRecommender
 
EvaluatePeriodicHeldOutTest - Class in moa.tasks
Task for evaluating a classifier on a stream by periodically testing on a heldout set.
EvaluatePeriodicHeldOutTest() - Constructor for class moa.tasks.EvaluatePeriodicHeldOutTest
 
EvaluatePrequential - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluatePrequential() - Constructor for class moa.tasks.EvaluatePrequential
 
EvaluatePrequentialRegression - Class in moa.tasks
Task for evaluating a classifier on a stream by testing then training with each example in sequence.
EvaluatePrequentialRegression() - Constructor for class moa.tasks.EvaluatePrequentialRegression
 
evaluationFrequencyOption - Variable in class moa.streams.clustering.ClusteringStream
 
evaluationSizeOption - Variable in class moa.classifiers.meta.DACC
Size of the evaluation window for weights computing
evaluatorOption - Variable in class moa.tasks.EvaluateConceptDrift
 
evaluatorOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to select the classifier performance evaluation method.
evaluatorOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
evaluatorOption - Variable in class moa.tasks.EvaluateModel
 
evaluatorOption - Variable in class moa.tasks.EvaluateModelRegression
 
evaluatorOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequential
 
evaluatorOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
EvalUtils - Class in moa.core.utils
Evaluation Utilities.
EvalUtils() - Constructor for class moa.core.utils.EvalUtils
 
eventDeleteCreateOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
eventFrequencyOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
eventMergeSplitOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
eventQueue - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
eventQueue - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
events - Variable in class moa.tasks.ConceptDriftMainTask
 
events - Variable in class moa.tasks.RegressionMainTask
 
EWMA_Estimator - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test.SampleInfo
 
EWMAChartDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in EWMA Charts of Ross, Adams, Tasoulis and Hand 2012
EWMAChartDM() - Constructor for class moa.classifiers.core.driftdetection.EWMAChartDM
 
EWMAClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using an Exponential Weighted Moving Average.
EWMAClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
EWMAClassificationPerformanceEvaluator.Estimator - Class in moa.evaluation
 
EWMAClassificationPerformanceEvaluator.Estimator(double) - Constructor for class moa.evaluation.EWMAClassificationPerformanceEvaluator.Estimator
 
ExactSTORM - Class in moa.clusterers.outliers.Angiulli
 
ExactSTORM() - Constructor for class moa.clusterers.outliers.Angiulli.ExactSTORM
 
ExactSTORM.ISBNodeExact - Class in moa.clusterers.outliers.Angiulli
 
ExactSTORM.ISBNodeExact(Instance, StreamObj, Long, int) - Constructor for class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
examplesSeen - Variable in class moa.classifiers.trees.FIMTDD.Node
 
examplesSeen() - Method in class moa.classifiers.trees.FIMTDD.Node
 
examplesSeen - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
examplesSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.FIMTDD.LeafNode
 
examplesSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
examplesSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
expandeRule(RuleClassification, Instance, int) - Method in class moa.classifiers.rules.RuleClassifier
 
expectedType - Variable in class moa.options.ListOption
 
exponential(double[]) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
exportButton - Variable in class moa.gui.TaskTextViewerPanel
 
exportButton - Variable in class moa.gui.TextViewerPanel
 
exportCSV(String, ArrayList<ClusterEvent>, MeasureCollection[], int) - Static method in class moa.gui.BatchCmd
 
exportCSV(String) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
exportCSV(String) - Method in class moa.gui.visualization.RunVisualizer
 
exportFileExtension - Static variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.RegressionTaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.TaskManagerPanel
 
exportFileExtension - Static variable in class moa.gui.TaskTextViewerPanel
 
exportFileExtension - Static variable in class moa.gui.TextViewerPanel
 
extendWithOldLabels(Instance) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
ExtractMin() - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
ExtractMin() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 

F

F1 - Class in moa.evaluation
 
F1() - Constructor for class moa.evaluation.F1
 
fadingErrorFactorOption - Variable in class moa.classifiers.rules.functions.TargetMean
 
fadingFactor - Variable in class moa.classifiers.rules.functions.Perceptron
 
FadingFactorClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using a fading factor.
FadingFactorClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
FadingFactorClassificationPerformanceEvaluator.Estimator - Class in moa.evaluation
 
FadingFactorClassificationPerformanceEvaluator.Estimator(double) - Constructor for class moa.evaluation.FadingFactorClassificationPerformanceEvaluator.Estimator
 
fadingFactorOption - Variable in class moa.classifiers.rules.functions.FadingTargetMean
 
fadingFactorOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
FadingTargetMean - Class in moa.classifiers.rules.functions
 
FadingTargetMean() - Constructor for class moa.classifiers.rules.functions.FadingTargetMean
 
FailedTaskReport - Class in moa.tasks
Class for reporting a failed task.
FailedTaskReport(Throwable) - Constructor for class moa.tasks.FailedTaskReport
 
failureReason - Variable in class moa.tasks.FailedTaskReport
 
featuresOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
FILE_PREFIX_STRING - Static variable in class moa.options.AbstractClassOption
The prefix text to use to indicate file.
fileAliasesOption - Variable in class moa.tasks.Plot
Comma separated list of aliases for the input *csv files.
fileExtension - Variable in class moa.gui.FileExtensionFilter
 
FileExtensionFilter - Class in moa.gui
A filter that is used to restrict the files that are shown.
FileExtensionFilter(String) - Constructor for class moa.gui.FileExtensionFilter
 
FileOption - Class in moa.options
File option.
FileOption(String, char, String, String, String, boolean) - Constructor for class moa.options.FileOption
 
fileOption - Variable in class moa.recommender.dataset.impl.FlixsterDataset
 
fileOption - Variable in class moa.recommender.dataset.impl.JesterDataset
 
fileOption - Variable in class moa.recommender.dataset.impl.MovielensDataset
 
FileOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a file option.
FileOptionEditComponent(FileOption) - Constructor for class moa.gui.FileOptionEditComponent
 
fileProgressMonitor - Variable in class moa.streams.ArffFileStream
 
fileProgressMonitor - Variable in class moa.streams.clustering.FileStream
 
fileReader - Variable in class moa.streams.ArffFileStream
 
fileReader - Variable in class moa.streams.clustering.FileStream
 
FileStream - Class in moa.streams.clustering
 
FileStream() - Constructor for class moa.streams.clustering.FileStream
 
filterChain - Variable in class moa.streams.FilteredStream
 
filterChain - Variable in class moa.streams.MultiFilteredStream
 
FilteredStream - Class in moa.streams
Class for representing a stream that is filtered.
FilteredStream() - Constructor for class moa.streams.FilteredStream
 
filterInstanceToLeaf(Instance, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
filterInstanceToLeaf(Instance, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, boolean) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
filterInstanceToLeaves(Instance, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>, boolean) - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
filterInstanceToLeaves(Instance, HoeffdingOptionTree.SplitNode, int, boolean) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
filterInstanceToLeaves(Instance, HoeffdingOptionTree.SplitNode, int, List<HoeffdingOptionTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
filterInstanceToLeaves(Instance, HoeffdingOptionTree.SplitNode, int, List<HoeffdingOptionTree.FoundNode>, boolean) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
filtersOption - Variable in class moa.streams.FilteredStream
 
filtersOption - Variable in class moa.streams.MultiFilteredStream
 
FIMTDD - Class in moa.classifiers.trees
 
FIMTDD() - Constructor for class moa.classifiers.trees.FIMTDD
 
FIMTDD.FIMTDDPerceptron - Class in moa.classifiers.trees
 
FIMTDD.FIMTDDPerceptron(FIMTDD.FIMTDDPerceptron) - Constructor for class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
FIMTDD.FIMTDDPerceptron() - Constructor for class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
FIMTDD.LeafNode - Class in moa.classifiers.trees
 
FIMTDD.LeafNode(FIMTDD) - Constructor for class moa.classifiers.trees.FIMTDD.LeafNode
Create a new LeafNode
FIMTDD.Node - Class in moa.classifiers.trees
 
FIMTDD.Node() - Constructor for class moa.classifiers.trees.FIMTDD.Node
 
FIMTDD.SplitNode - Class in moa.classifiers.trees
 
FIMTDD.SplitNode(InstanceConditionalTest, FIMTDD) - Constructor for class moa.classifiers.trees.FIMTDD.SplitNode
Create a new SplitNode
FIMTDDNumericAttributeClassLimitObserver - Class in moa.classifiers.rules.core.attributeclassobservers
 
FIMTDDNumericAttributeClassLimitObserver() - Constructor for class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
FIMTDDNumericAttributeClassLimitObserver.Node - Class in moa.classifiers.rules.core.attributeclassobservers
 
FIMTDDNumericAttributeClassLimitObserver.Node(double, double, double) - Constructor for class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
 
FIMTDDNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
 
FIMTDDNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
FIMTDDNumericAttributeClassObserver.Node - Class in moa.classifiers.core.attributeclassobservers
 
FIMTDDNumericAttributeClassObserver.Node(double, double, double) - Constructor for class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
finalResult - Variable in class moa.tasks.TaskThread
 
findBestSplit(SplitCriterion) - Method in class moa.classifiers.trees.DecisionStump
 
findBestValEntropy(BinaryTreeNumericAttributeClassObserver.Node, DoubleVector, DoubleVector, boolean, double, DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
findBestValEntropyNominalAtt(AutoExpandVector<DoubleVector>, int) - Method in class moa.classifiers.rules.RuleClassifier
 
findClassesInDirectoryRecursive(File, String) - Static method in class moa.core.AutoClassDiscovery
 
findClassesOfType(String, Class<?>) - Static method in class moa.core.AutoClassDiscovery
 
findClassNames(String) - Static method in class moa.core.AutoClassDiscovery
 
findIndexOfTupleGreaterThan(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
findLearningNodes() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
findLearningNodes(HoeffdingOptionTree.Node, HoeffdingOptionTree.SplitNode, int, List<HoeffdingOptionTree.FoundNode>) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
findLearningNodes() - Method in class moa.classifiers.trees.HoeffdingTree
 
findLearningNodes(HoeffdingTree.Node, HoeffdingTree.SplitNode, int, List<HoeffdingTree.FoundNode>) - Method in class moa.classifiers.trees.HoeffdingTree
 
findMaxDelta() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
FindMin() - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
FindMin() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
findNearestNeighbours(Instance, KDTreeNode, int, NearestNeighbourSearch.MyHeap, double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns (in the supplied heap object) the k nearest neighbours of the given instance starting from the give tree node.
findSuitableClasses(Class<?>) - Method in class moa.gui.ClassOptionSelectionPanel
 
findSuitableClasses(Class<?>, String[]) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
findWorstOption() - Method in class moa.classifiers.trees.ORTO
 
fireClusterChange(long, String, String) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
Fire a ClusterChangeEvent to all registered listeners
firePropertyChange(String, Object, Object) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, Object, Object) - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
firePropertyChange(String, boolean, boolean) - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
fireTaskCompleted() - Method in class moa.tasks.TaskThread
 
first - Variable in class moa.clusterers.outliers.utils.mtree.utils.Pair
The first object.
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.MCOD.MCODBase
 
FIRST_OBJ_ID - Static variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
firstClassifierSizeOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
firstHit(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
firstHitNB(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
firstLeafLevelOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
firstValueOption - Variable in class moa.tasks.RunStreamTasks
 
firstValueOption - Variable in class moa.tasks.RunTasks
 
FIXED_PANEL_WIDTH - Static variable in class moa.gui.OptionsConfigurationPanel
 
fixedThresholdOption - Variable in class moa.classifiers.active.ActiveClassifier
 
FlagOption - Class in moa.options
Flag option.
FlagOption(String, char, String) - Constructor for class moa.options.FlagOption
 
FlagOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a flag option.
FlagOptionEditComponent(FlagOption) - Constructor for class moa.gui.FlagOptionEditComponent
 
FlixsterDataset - Class in moa.recommender.dataset.impl
 
FlixsterDataset() - Constructor for class moa.recommender.dataset.impl.FlixsterDataset
 
FloatOption - Class in moa.options
Float option.
FloatOption(String, char, String, double) - Constructor for class moa.options.FloatOption
 
FloatOption(String, char, String, double, double, double) - Constructor for class moa.options.FloatOption
 
FloatOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a float option.
FloatOptionEditComponent(FloatOption) - Constructor for class moa.gui.FloatOptionEditComponent
 
floatValueToSliderValue(double) - Method in class moa.gui.FloatOptionEditComponent
 
forceAddEvents() - Method in class moa.gui.visualization.GraphCanvas
 
formatInstance(Instance) - Method in class moa.core.utils.Converter
 
fract_before - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM.ISBNodeAppr
 
frequencies - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
fromCommandLine(ClassOption, String) - Static method in class weka.core.MOAUtils
Turns a commandline into an object (classname + optional options).
fromCommandLine(Class, String) - Static method in class weka.core.MOAUtils
Turns a commandline into an object (classname + optional options).
fromOption(ClassOption) - Static method in class weka.core.MOAUtils
Creates a MOA object from the specified class option.
fullSizeOf(Object) - Static method in class moa.core.SizeOf
Returns the full size of the object.
functionOption - Variable in class moa.streams.generators.AgrawalGenerator
 
functionOption - Variable in class moa.streams.generators.SEAGenerator
 
functionOption - Variable in class moa.streams.generators.STAGGERGenerator
 

G

g - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
gamma - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
gammaOption - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
gammaOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
GaussianEstimator - Class in moa.core
Gaussian incremental estimator that uses incremental method that is more resistant to floating point imprecision.
GaussianEstimator() - Constructor for class moa.core.GaussianEstimator
 
gaussianMeans(Clustering, Clustering) - Static method in class moa.clusterers.KMeans
 
GaussianNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using gaussian estimators.
GaussianNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
General - Class in moa.evaluation
 
General() - Constructor for class moa.evaluation.General
 
generateCentroids() - Method in class moa.streams.generators.RandomRBFGenerator
 
generateCentroids() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
generateConditional(double[], boolean[][]) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
GenerateConditional.
generateExample() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates one example of the dataset.
generateExamples() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates all examples of the dataset.
generateFinished() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates a comment string that documentats the data generator.
generateHeader() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
generateHeader() - Method in class moa.streams.generators.HyperplaneGenerator
 
generateHeader() - Method in class moa.streams.generators.RandomRBFGenerator
 
generateHeader() - Method in class moa.streams.generators.RandomTreeGenerator
 
generateMultilabelHeader(Instances) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
GenerateMultilabelHeader.
generateRandomTree() - Method in class moa.streams.generators.RandomTreeGenerator
 
generateRandomTreeNode(int, ArrayList<Integer>, double[], double[], Random) - Method in class moa.streams.generators.RandomTreeGenerator
 
generateSizeOption - Variable in class moa.tasks.MeasureStreamSpeed
 
generateStart() - Method in class weka.datagenerators.classifiers.classification.MOA
Generates a comment string that documentates the data generator.
generatorTipText() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns the tooltip displayed in the GUI.
GeometricMovingAverageDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in Geometric Moving Average Test
GeometricMovingAverageDM() - Constructor for class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
get() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the first element and removes it from the heap.
get(int) - Method in class moa.cluster.Clustering
remove a cluster from the clustering
get(int) - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
get(int) - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
get(int) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
get(int) - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
get(int) - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
get(int) - Method in interface moa.clusterers.outliers.utils.mtree.DistanceFunctions.EuclideanCoordinate
A method to access the index-th component of the coordinate.
get(int) - Method in class moa.clusterers.outliers.utils.mtree.utils.Pair
Accesses an object by its index.
get(int) - Method in class moa.core.AutoExpandVector
 
get(String, String) - Static method in class moa.gui.GUIDefaults
returns the value for the specified property, if non-existent then the default value.
get(int) - Method in class moa.recommender.rc.utils.DenseVector
 
get(int) - Method in class moa.recommender.rc.utils.SparseVector
 
get(int) - Method in class moa.recommender.rc.utils.Vector
 
Get_nn_before() - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
Get_nn_before() - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
getActiveXDim() - Method in class moa.gui.visualization.StreamOutlierPanel
 
getActiveXDim() - Method in class moa.gui.visualization.StreamPanel
 
getActiveYDim() - Method in class moa.gui.visualization.StreamOutlierPanel
 
getActiveYDim() - Method in class moa.gui.visualization.StreamPanel
 
getAcuity() - Method in class moa.clusterers.CobWeb
get the acuity value
getAlgorithm0ValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getAlgorithm0ValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getAlgorithm1ValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getAlgorithm1ValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getAllValues(int) - Method in class moa.evaluation.MeasureCollection
 
getAlternateTree() - Method in class moa.classifiers.trees.ORTO.InnerNode
 
getAMRules() - Method in class moa.classifiers.rules.core.Rule.Builder
 
getArrayCopy() - Method in class moa.core.DoubleVector
 
getArrayRef() - Method in class moa.core.DoubleVector
 
getAsCLIString() - Method in class moa.options.Options
 
getAttributeIndices() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Gets the range of attributes used in the calculation of the distance.
getAttributeIndices() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Gets the range of attributes used in the calculation of the distance.
getAttributeNameString(int) - Method in class moa.classifiers.AbstractClassifier
Gets the name of an attribute from the header.
getAttributeNameString(int) - Method in class moa.clusterers.AbstractClusterer
 
getAttributeNameString(InstancesHeader, int) - Static method in class moa.core.InstancesHeader
 
getAttributeObservers() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getAttributeValue() - Method in class moa.classifiers.rules.Predicates
 
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Returns an array with the attributes that the test depends on.
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
getAttsTestDependsOn() - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
getAttsTestDependsOn() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getAvgRatingItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getAvgRatingItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getAvgRatingUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getAvgRatingUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getAWTRenderer() - Method in class moa.classifiers.AbstractClassifier
Returns the AWT Renderer
getAWTRenderer() - Method in class moa.clusterers.AbstractClusterer
 
getAWTRenderer() - Method in interface moa.gui.AWTRenderable
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
Gets the best split suggestion given a criterion and a class distribution
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
getBestEvaluatedSplitSuggestion(SplitCriterion, double[], int, boolean) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
getBestSecondBestEntropy(DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
getBestSplitSuggestions(SplitCriterion) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getBestSplitSuggestions(SplitCriterion, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
Return the best split suggestions for this node using the given split criteria
getBestSplitSuggestions(SplitCriterion, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
getBestSplitSuggestions(SplitCriterion, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
getBestSplitSuggestions(SplitCriterion, ORTO) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
Return the best split suggestions for this node using the given split criteria
getBestSuggestion() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getBucketsUsed() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getBuffer() - Method in class moa.clusterers.clustree.Entry
Getter for the buffer.
getBuilder() - Method in class moa.classifiers.rules.core.Rule
 
getBytesRead() - Method in class moa.core.InputStreamProgressMonitor
 
getBytesRemaining() - Method in class moa.core.InputStreamProgressMonitor
 
getCapabilities() - Method in class weka.classifiers.meta.MOA
Returns the Capabilities of this classifier.
getCenter() - Method in class moa.cluster.CFCluster
 
getCenter() - Method in class moa.cluster.Cluster
 
getCenter() - Method in class moa.cluster.SphereCluster
 
getCenter() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getCenter() - Method in class moa.clusterers.clustree.ClusKernel
 
getCenter() - Method in class moa.clusterers.denstream.MicroCluster
 
getCenterDistance(Instance) - Method in class moa.cluster.SphereCluster
 
getCenterDistance(SphereCluster) - Method in class moa.cluster.SphereCluster
 
getCF() - Method in class moa.cluster.CFCluster
 
getCF() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getCF() - Method in class moa.clusterers.clustree.ClusKernel
 
getCF() - Method in class moa.clusterers.denstream.MicroCluster
 
getCF() - Method in class moa.clusterers.macro.NonConvexCluster
 
getCFCluster() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
getChange() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets whether there is change detected.
getChange() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getChange() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets whether there is change detected.
getChange() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getChild(int) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
getChild(int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
getChild(int) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
getChild(int) - Method in class moa.classifiers.trees.ORTO.InnerNode
 
getChild() - Method in class moa.clusterers.clustree.Entry
Return the reference to the child of this Entry to navigate in the tree.
getChildIndex(FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
getChildIndex(ORTO.Node) - Method in class moa.classifiers.trees.ORTO.InnerNode
 
getChildIndex(ORTO.Node) - Method in class moa.classifiers.trees.ORTO.Node
 
getChosenIndex() - Method in class moa.options.MultiChoiceOption
 
getChosenLabel() - Method in class moa.options.MultiChoiceOption
 
getChosenObjectCLIString(Class<?>) - Method in class moa.gui.ClassOptionSelectionPanel
 
getChosenObjectCLIString(Class<?>) - Method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
getClassDistribution(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassDistributionByLabel(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassDistsResultingFromBinarySplit(double) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getClassDistsResultingFromBinarySplit(double) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
getClassDistsResultingFromBinarySplit(int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getClassDistsResultingFromMultiwaySplit(int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getClassifier() - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
getClassifier() - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
getClassifier() - Method in class weka.classifiers.meta.MOA
Returns the current MOA classifier in use.
getClassLabel() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Return the label for the DataObject.
getClassLabelString(int) - Method in class moa.classifiers.AbstractClassifier
Gets the name of a label of the class from the header.
getClassLabelString(int) - Method in class moa.clusterers.AbstractClusterer
 
getClassLabelString(InstancesHeader, int) - Static method in class moa.core.InstancesHeader
 
getClassNames() - Method in class moa.options.ClassOptionWithNames
 
getClassNameString() - Method in class moa.classifiers.AbstractClassifier
Gets the name of the attribute of the class from the header.
getClassNameString() - Method in class moa.clusterers.AbstractClusterer
 
getClassNameString(InstancesHeader) - Static method in class moa.core.InstancesHeader
 
getClassSeparability() - Method in class moa.evaluation.CMM_GTAnalysis
Calculates how well the original clusters are separable.
getClassSum(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassSumByLabel(int) - Method in class moa.evaluation.MembershipMatrix
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
getClassVotes(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
getClassVotes(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
 
getClassVotes(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
getCLIChar() - Method in class moa.options.AbstractOption
 
getCLIChar() - Method in interface moa.options.Option
Gets the Command Line Interface text of this option
getCLICreationString(Class<?>) - Method in class moa.options.AbstractOptionHandler
 
getCLICreationString(Class<?>) - Method in interface moa.options.OptionHandler
Gets the Command Line Interface text to create the object
getClock() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getClusterClassWeight(int, int) - Method in class moa.evaluation.MembershipMatrix
 
getClusterClassWeightByLabel(int, int) - Method in class moa.evaluation.MembershipMatrix
 
getClusterer0() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getClusterer0() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getClusterer0() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getClusterer1() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getClusterer1() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getClusterer1() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getClusterID() - Method in class moa.gui.visualization.ClusterPanel
 
getClusterID() - Method in class moa.gui.visualization.OutlierPanel
 
getClustering() - Method in class moa.cluster.Clustering
 
getClustering(long, int) - Method in class moa.clusterers.clustree.ClusTree
 
getClustering(Clustering) - Method in class moa.clusterers.macro.AbstractMacroClusterer
 
getClustering(Clustering) - Method in class moa.clusterers.macro.dbscan.DBScan
 
getClustering() - Method in interface moa.clusterers.macro.IDenseMacroCluster
 
getClustering(Clustering) - Method in interface moa.clusterers.macro.IMacroClusterer
 
getClustering() - Method in class moa.clusterers.macro.NonConvexCluster
 
getClusteringCopy() - Method in class moa.cluster.Clustering
 
getClusteringResult() - Method in interface moa.clusterers.Clusterer
 
getClusteringResult() - Method in class moa.clusterers.ClusterGenerator
 
getClusteringResult() - Method in class moa.clusterers.clustream.Clustream
 
getClusteringResult() - Method in class moa.clusterers.clustream.WithKmeans
 
getClusteringResult(Clustering) - Method in class moa.clusterers.clustream.WithKmeans
 
getClusteringResult() - Method in class moa.clusterers.clustree.ClusTree
 
getClusteringResult() - Method in class moa.clusterers.CobWeb
 
getClusteringResult() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getClusteringResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getClusteringResult() - Method in class moa.clusterers.streamkm.StreamKM
 
getClusteringResult() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getClusterLabel() - Method in class moa.gui.visualization.ClusterPanel
 
getClusterLabel() - Method in class moa.gui.visualization.OutlierPanel
 
getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.cluster.Cluster
 
getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.cluster.SphereCluster
 
getClusterSpecificInfo(ArrayList<String>, ArrayList<String>) - Method in class moa.clusterers.clustream.ClustreamKernel
 
getClusterSum(int) - Method in class moa.evaluation.MembershipMatrix
 
getColor(int) - Static method in class moa.clusterers.macro.ColorArray
 
getColor() - Method in class moa.clusterers.macro.ColorObject
 
getColumnCount() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getColumnCount() - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getColumnCount() - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getColumnName(int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getColumnName(int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getConfidence(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
getConnectionValue(CMM_GTAnalysis.CMMPoint, int) - Method in class moa.evaluation.CMM_GTAnalysis
Calculate the connection of a point to a cluster
getCountBelow(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getCountNominalAttrib(ArrayList<Predicates>) - Method in class moa.classifiers.rules.RuleClassifier
 
getCPUSecondsElapsed() - Method in class moa.tasks.TaskThread
 
getCreationTime() - Method in class moa.clusterers.denstream.MicroCluster
 
getCumulativeSum() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
getCurrentActivityDescription() - Method in class moa.tasks.NullMonitor
 
getCurrentActivityDescription() - Method in class moa.tasks.StandardTaskMonitor
 
getCurrentActivityDescription() - Method in interface moa.tasks.TaskMonitor
Gets the description of the current activity.
getCurrentActivityFracComplete() - Method in class moa.tasks.TaskThread
 
getCurrentActivityFractionComplete() - Method in class moa.tasks.NullMonitor
 
getCurrentActivityFractionComplete() - Method in class moa.tasks.StandardTaskMonitor
 
getCurrentActivityFractionComplete() - Method in interface moa.tasks.TaskMonitor
Gets the percentage done of the current activity
getCurrentActivityString() - Method in class moa.tasks.TaskThread
 
getCurrenTask() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
getCurrentError() - Method in class moa.classifiers.rules.core.Rule
 
getCurrentError() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getCurrentError() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getCurrentError() - Method in class moa.classifiers.rules.functions.Perceptron
 
getCurrentError() - Method in class moa.classifiers.rules.functions.TargetMean
 
getCurrentStatusString() - Method in class moa.tasks.TaskThread
 
getCurrentTimestamp() - Static method in class moa.gui.visualization.RunOutlierVisualizer
 
getCurrentTimestamp() - Static method in class moa.gui.visualization.RunVisualizer
 
getCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
Gets the custom editor component.
getCutoff() - Method in class moa.clusterers.CobWeb
get the cutoff
getData() - Method in class moa.clusterers.clustree.Entry
Getter for the data.
getData() - Method in class moa.recommender.data.MemRecommenderData
 
getData() - Method in interface moa.recommender.data.RecommenderData
 
getData() - Method in class moa.recommender.predictor.BaselinePredictor
 
getData() - Method in class moa.recommender.predictor.BRISMFPredictor
 
getData() - Method in interface moa.recommender.predictor.RatingPredictor
 
getData() - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
getData() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getData() - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
getDataObjectArray() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns an array of all the DataObjects in the set.
getDataset(int, int) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getDataSetsPerClass() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Separates the objects in this data set according to their class label
getDecayHorizon() - Method in class moa.streams.clustering.ClusteringStream
 
getDecayThreshold() - Method in class moa.streams.clustering.ClusteringStream
 
getDefaultCLIString() - Method in class moa.options.AbstractClassOption
 
getDefaultCLIString() - Method in class moa.options.FlagOption
 
getDefaultCLIString() - Method in class moa.options.FloatOption
 
getDefaultCLIString() - Method in class moa.options.IntOption
 
getDefaultCLIString() - Method in class moa.options.ListOption
 
getDefaultCLIString() - Method in class moa.options.MultiChoiceOption
 
getDefaultCLIString() - Method in interface moa.options.Option
Gets the Command Line Interface text
getDefaultCLIString() - Method in class moa.options.StringOption
 
getDefaultEnabled() - Method in class moa.evaluation.Accuracy
 
getDefaultEnabled() - Method in class moa.evaluation.ChangeDetectionMeasures
 
getDefaultEnabled() - Method in class moa.evaluation.CMM
 
getDefaultEnabled() - Method in class moa.evaluation.EntropyCollection
 
getDefaultEnabled() - Method in class moa.evaluation.MeasureCollection
 
getDefaultEnabled() - Method in class moa.evaluation.OutlierPerformance
 
getDefaultEnabled() - Method in class moa.evaluation.RegressionAccuracy
 
getDefaultEnabled() - Method in class moa.evaluation.SilhouetteCoefficient
 
getDefaultEnabled() - Method in class moa.evaluation.SSQ
 
getDefaultEnabled() - Method in class moa.evaluation.StatisticalCollection
 
getDefaultFileExtension() - Method in class moa.options.FileOption
 
getDefaultHeight() - Method in class moa.clusterers.clustree.ClusTree
 
getDelay() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets the length of the delay in the change detected.
getDelay() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets the length of the delay in the change detected.
getDescription(StringBuilder, int) - Method in class moa.classifiers.AbstractClassifier
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Returns a string representation of the model.
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
getDescription(StringBuilder, int) - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Returns a string representation of the model.
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.CusumDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.DDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EDDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.Rule
MOA GUI output
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.core.voting.UniformWeightedVote
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.Predicates
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassification
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ORTO.Node
 
getDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
getDescription(StringBuilder, int) - Method in class moa.cluster.Cluster
 
getDescription(StringBuilder, int) - Method in class moa.cluster.Clustering
 
getDescription(StringBuilder, int) - Method in class moa.clusterers.AbstractClusterer
 
getDescription(StringBuilder, int) - Method in class moa.clusterers.denstream.Timestamp
 
getDescription(StringBuilder, int) - Method in class moa.core.AutoExpandVector
 
getDescription(StringBuilder, int) - Method in class moa.core.DoubleVector
 
getDescription(StringBuilder, int) - Method in class moa.core.GaussianEstimator
 
getDescription(StringBuilder, int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getDescription(StringBuilder, int) - Method in class moa.core.Measurement
 
getDescription(StringBuilder, int) - Method in class moa.core.utils.Converter
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.LearningCurve
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.LearningEvaluation
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.MeasureCollection
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
getDescription(StringBuilder, int) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getDescription() - Method in class moa.gui.AbstractTabPanel
Returns a short description (can be used as tool tip) of the tab, or contributor, etc.
getDescription() - Method in class moa.gui.ClassificationTabPanel
 
getDescription() - Method in class moa.gui.clustertab.ClusteringTabPanel
 
getDescription() - Method in class moa.gui.ConceptDriftTabPanel
 
getDescription() - Method in class moa.gui.FileExtensionFilter
 
getDescription() - Method in class moa.gui.outliertab.OutlierTabPanel
 
getDescription() - Method in class moa.gui.RegressionTabPanel
 
getDescription(StringBuilder, int) - Method in interface moa.MOAObject
Returns a string representation of this object.
getDescription(StringBuilder, int) - Method in class moa.options.AbstractOption
 
getDescription(StringBuilder, int) - Method in class moa.options.Options
 
getDescription(StringBuilder, int) - Method in class moa.recommender.data.MemRecommenderData
 
getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.JesterDataset
 
getDescription(StringBuilder, int) - Method in class moa.recommender.dataset.impl.MovielensDataset
 
getDescription(StringBuilder, int) - Method in class moa.recommender.predictor.BaselinePredictor
 
getDescription(StringBuilder, int) - Method in class moa.recommender.predictor.BRISMFPredictor
 
getDescription(StringBuilder, int) - Method in class moa.streams.ArffFileStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.CachedInstancesStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.clustering.FileStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
TOOLS
getDescription(StringBuilder, int) - Method in class moa.streams.ConceptDriftRealStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.ConceptDriftStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.FilteredStream
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.AddNoiseFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.CacheFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.AgrawalGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.HyperplaneGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.LEDGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.LEDGeneratorDrift
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomRBFGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.RandomTreeGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.SEAGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.STAGGERGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.WaveformGenerator
 
getDescription(StringBuilder, int) - Method in class moa.streams.generators.WaveformGeneratorDrift
 
getDescription(StringBuilder, int) - Method in class moa.streams.MultiFilteredStream
 
getDescription(StringBuilder, int) - Method in class moa.tasks.AbstractTask
 
getDescription(StringBuilder, int) - Method in class moa.tasks.FailedTaskReport
 
getDescriptions() - Static method in enum moa.tasks.Plot.LegendLocation
Gets an array of string descriptions - one for each enum value.
getDescriptions() - Static method in enum moa.tasks.Plot.LegendType
Gets an array of string descriptions - one for each enum value.
getDescriptions() - Static method in enum moa.tasks.Plot.PlotStyle
Gets an array of string descriptions = one for each enum value.
getDescriptions() - Static method in enum moa.tasks.Plot.Terminal
Gets an array of string descriptions - one for each enum value.
getDetect() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getDistance(DataPoint) - Method in class moa.gui.visualization.DataPoint
 
getDistanceFunction() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
returns the distance function currently in use.
getDistanceFunction() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
returns the distance function currently in use.
getDistances() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the distances to the kNearest or 1 nearest neighbour currently found with either the kNearestNeighbours or the nearestNeighbour method.
getDistances() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns the distances of the k nearest neighbours.
getDistances() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the distances of the k nearest neighbours.
getDistanceVector(Instance) - Method in class moa.cluster.SphereCluster
 
getDistanceVector(SphereCluster) - Method in class moa.cluster.SphereCluster
 
getDontNormalize() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Gets whether if the attribute values are to be normazlied in distance calculation.
getEditComponent() - Method in class moa.options.AbstractClassOption
 
getEditComponent() - Method in class moa.options.AbstractOption
 
getEditComponent() - Method in class moa.options.ClassOption
 
getEditComponent() - Method in class moa.options.ClassOptionWithNames
 
getEditComponent() - Method in class moa.options.FileOption
 
getEditComponent() - Method in class moa.options.FlagOption
 
getEditComponent() - Method in class moa.options.FloatOption
 
getEditComponent() - Method in class moa.options.IntOption
 
getEditComponent() - Method in class moa.options.MultiChoiceOption
 
getEditComponent() - Method in interface moa.options.Option
Gets the GUI component to edit
getEditComponent() - Method in class moa.options.WEKAClassOption
 
getEditedOption() - Method in class moa.gui.ClassOptionEditComponent
 
getEditedOption() - Method in class moa.gui.ClassOptionWithNamesEditComponent
 
getEditedOption() - Method in class moa.gui.FileOptionEditComponent
 
getEditedOption() - Method in class moa.gui.FlagOptionEditComponent
 
getEditedOption() - Method in class moa.gui.FloatOptionEditComponent
 
getEditedOption() - Method in class moa.gui.IntOptionEditComponent
 
getEditedOption() - Method in class moa.gui.MultiChoiceOptionEditComponent
 
getEditedOption() - Method in interface moa.gui.OptionEditComponent
Gets the option of this component
getEditedOption() - Method in class moa.gui.StringOptionEditComponent
 
getEditedOption() - Method in class moa.gui.WEKAClassOptionEditComponent
 
getEMClusteringVariances(double[][], int) - Method in class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
Performs an EM clustering on the provided data set !! Only the variances are calculated and used for point assignments ! !!! the number k' of returned clusters might be smaller than k !!!
getEMClusteringVariancesBestChoice(double[][], int, int) - Method in class moa.clusterers.outliers.AnyOut.util.EMProjectedClustering
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OCBoost
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OzaBoost
 
getEnsembleMemberWeight(int) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getEntries() - Method in class moa.clusterers.clustree.Node
Return an array with references to the children of this node.
getError(Instance) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
Return the error for a given instance
getErrorEstimation() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
getErrorEstimation() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
getErrorEstimation() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
getErrorWidth() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
getErrorWidth() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
getErrorWidth() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
getEstimation() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets the prediction of next values.
getEstimation() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getEstimation() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets the prediction of next values.
getEstimation() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
getEstimation() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
Gets the prediction of next values.
getEstimatorInfo() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getEvalPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getEvalPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getEvaluationFrequency() - Method in class moa.streams.clustering.ClusteringStream
 
getEventsList() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getEventsList() - Method in interface moa.streams.generators.cd.ConceptDriftGenerator
 
getEventsList() - Method in class moa.tasks.ConceptDriftMainTask
 
getEventsList() - Method in class moa.tasks.RegressionMainTask
 
getEventType(int) - Method in class moa.evaluation.MeasureCollection
 
getFailureReason() - Method in class moa.tasks.FailedTaskReport
 
getFeatures() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns the features (label attribute excluded).
getFeaturesAsArray() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns an array with all the features of all the objects in the set.
getFFRatio(int) - Method in class moa.classifiers.trees.ORTO.OptionNode
 
getFile() - Method in class moa.options.FileOption
 
getFinalResult() - Method in class moa.tasks.TaskThread
 
getFirst() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
returns the first element in the list.
getFirst() - Method in class moa.recommender.rc.utils.Pair
 
getFractionCorrectlyClassified() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getFractionCorrectlyClassified() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
getFractionCorrectlyClassified() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
getFractionCorrectlyClassified() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
getFractionCorrectlyClassified() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
getFractionIncorrectlyClassified() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getFractionIncorrectlyClassified() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
getFractionIncorrectlyClassified() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
getFractionIncorrectlyClassified() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
getFractionIncorrectlyClassified() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
getGeneratingClusters() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getGenerator() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns the current MOA stream generator in use.
getGlobalMean() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getGlobalMean() - Method in interface moa.recommender.rc.data.RecommenderData
 
getGraphCanvas() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getGraphCanvas() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getGroundTruth() - Method in class moa.cluster.Cluster
 
getGT0Cluster(int) - Method in class moa.evaluation.CMM_GTAnalysis
Return cluster
getHalf(boolean) - Method in class moa.classifiers.meta.DACC
Returns the best (or worst) half of classifiers in the adaptive ensemble.
getHeader() - Method in class moa.streams.ArffFileStream
 
getHeader() - Method in class moa.streams.CachedInstancesStream
 
getHeader() - Method in class moa.streams.clustering.FileStream
 
getHeader() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getHeader() - Method in class moa.streams.ConceptDriftRealStream
 
getHeader() - Method in class moa.streams.ConceptDriftStream
 
getHeader() - Method in class moa.streams.FilteredStream
 
getHeader() - Method in class moa.streams.filters.AddNoiseFilter
 
getHeader() - Method in class moa.streams.filters.CacheFilter
 
getHeader() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
getHeader() - Method in class moa.streams.generators.AgrawalGenerator
 
getHeader() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getHeader() - Method in class moa.streams.generators.HyperplaneGenerator
 
getHeader() - Method in class moa.streams.generators.LEDGenerator
 
getHeader() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
getHeader() - Method in class moa.streams.generators.multilabel.MultilabelArffFileStream
 
getHeader() - Method in class moa.streams.generators.RandomRBFGenerator
 
getHeader() - Method in class moa.streams.generators.RandomTreeGenerator
 
getHeader() - Method in class moa.streams.generators.SEAGenerator
 
getHeader() - Method in class moa.streams.generators.STAGGERGenerator
 
getHeader() - Method in class moa.streams.generators.WaveformGenerator
 
getHeader() - Method in interface moa.streams.InstanceStream
Gets the header of this stream.
getHeader() - Method in class moa.streams.MultiFilteredStream
 
getHeadOptionCount() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
getHeight() - Method in class moa.clusterers.clustree.ClusTree
Return the current height of the tree.
getHelp(StringBuilder, int) - Method in class moa.options.Options
 
getHelpString() - Method in class moa.options.Options
 
getHelpText() - Method in class moa.gui.OptionsConfigurationPanel
 
getHighlightedClusterPanel() - Method in class moa.gui.visualization.StreamPanel
 
getHighlightedOutlierPanel() - Method in class moa.gui.visualization.StreamOutlierPanel
 
getHullDistance(SphereCluster) - Method in class moa.cluster.SphereCluster
 
getId() - Method in class moa.cluster.Cluster
 
getId() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns the id for the DataObject.
getIdxs() - Method in class moa.recommender.rc.utils.DenseVector
 
getIdxs() - Method in class moa.recommender.rc.utils.SparseVector
 
getIdxs() - Method in class moa.recommender.rc.utils.Vector
 
getInclusionProbability(Instance) - Method in class moa.cluster.CFCluster
 
getInclusionProbability(Instance) - Method in class moa.cluster.Cluster
Returns the probability of the given point belonging to this cluster.
getInclusionProbability(Instance) - Method in class moa.cluster.SphereCluster
 
getInclusionProbability(Instance) - Method in class moa.clusterers.clustream.ClustreamKernel
See interface Cluster
getInclusionProbability(Instance) - Method in class moa.clusterers.clustree.ClusKernel
 
getInclusionProbability(Instance) - Method in class moa.clusterers.denstream.MicroCluster
 
getInclusionProbability(Instance) - Method in class moa.clusterers.macro.NonConvexCluster
 
getInclusionProbability(CMM_GTAnalysis.CMMPoint) - Method in class moa.evaluation.CMM_GTAnalysis.GTCluster
Calculate the probability of the point being covered through the cluster
getInfo() - Method in class moa.cluster.Cluster
 
getInfo(int, int) - Method in class moa.gui.visualization.DataPoint
 
getInfo() - Method in class moa.gui.visualization.OutlierPanel
 
getInitalBuildTimestamp() - Method in class moa.evaluation.MembershipMatrix
 
getInitialDirectory() - Static method in class moa.gui.GUIDefaults
Returns the initial directory for the file chooser used for opening datasets.
getInputValues() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getInstance() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Return the Instance of the DataObject.
getInstances() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
returns the instances currently set.
getInstances() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
returns the instances currently set.
getInstances() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
returns the instances currently set.
getInstancesSeen() - Method in class moa.classifiers.rules.core.Rule
 
getInstancesSeen() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getInstancesSeen() - Method in class moa.classifiers.rules.functions.Perceptron
 
getInstanceValues(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
GetInterval() - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.ProgressInfo
 
getInvertSelection() - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Gets whether the matching sense of attribute indices is inverted or not.
getInvertSelection() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Gets whether the matching sense of attribute indices is inverted or not.
getIrrelevantEntry(double) - Method in class moa.clusterers.clustree.Node
If there exists an entry, whose relevance is under the threshold given as a parameter to the tree, this entry is returned.
getItemFeatures(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getItems() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getItems() - Method in interface moa.recommender.rc.data.RecommenderData
 
getKappaStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getKappaStatistic() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
getKappaTemporalStatistic() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getKappaTemporalStatistic() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
getKthNearest() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the kth nearest element or null if none there.
getL() - Method in class moa.core.utils.Converter
 
getLabel() - Method in class moa.evaluation.CMM_GTAnalysis.GTCluster
The original class label the cluster represents
getLambda() - Method in class moa.classifiers.functions.SGD
Get the current value of lambda
getLambda() - Method in class moa.classifiers.functions.SGDMultiClass
Get the current value of lambda
getLambda() - Method in class moa.classifiers.functions.SPegasos
Get the current value of lambda
getLast() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
returns the last element in the list.
getLastEditTimestamp() - Method in class moa.clusterers.denstream.MicroCluster
 
getLastValue(int) - Method in class moa.evaluation.MeasureCollection
 
getLatestPreviewGrabTimeSeconds() - Method in class moa.tasks.TaskThread
 
getLatestResultPreview() - Method in class moa.tasks.NullMonitor
 
getLatestResultPreview() - Method in class moa.tasks.StandardTaskMonitor
 
getLatestResultPreview() - Method in interface moa.tasks.TaskMonitor
Gets the current result to preview
getLatestResultPreview() - Method in class moa.tasks.TaskThread
 
getLearnerToUse(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getLearnerToUse(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getLearningNode() - Method in class moa.classifiers.rules.core.Rule
getLearningNode Method This is the way to pass info for other classes.
getLearningRate() - Method in class moa.classifiers.functions.SGD
Get the learning rate.
getLearningRate() - Method in class moa.classifiers.functions.SGDMultiClass
Get the learning rate.
getLeftStreamPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getLeftStreamPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getLevel() - Method in class moa.classifiers.trees.ORTO.Node
 
getLevel(ClusTree) - Method in class moa.clusterers.clustree.Node
Returns the level at which this node is in the tree.
getList() - Method in class moa.options.ListOption
 
getLogPanel() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getLogPanel() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getLossFunction() - Method in class moa.classifiers.functions.SGD
Get the current loss function.
getLossFunction() - Method in class moa.classifiers.functions.SGDMultiClass
Get the current loss function.
getLossFunction() - Method in class moa.classifiers.functions.SPegasos
Get the current loss function.
getLowerQuartile(int) - Method in class moa.evaluation.MeasureCollection
 
getMaxAttValsObserved() - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
getMaxInclusionProbability(Instance) - Method in class moa.cluster.Clustering
 
getMAXIndexes() - Method in class moa.classifiers.meta.DACC
Returns the classifiers that vote for the final prediction when the MAX combination function is selected
getMaxInstInLeaf() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Get the maximum number of instances in a leaf.
getMaxRating() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getMaxRating() - Method in interface moa.recommender.rc.data.RecommenderData
 
getMaxRelativeNodeWidth(double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the maximum attribute width of instances/points in a KDTreeNode relative to the whole dataset.
getMaxValue(int) - Method in class moa.evaluation.MeasureCollection
 
getMaxValue() - Method in class moa.options.FloatOption
 
getMaxValue() - Method in class moa.options.IntOption
 
getMean() - Method in class moa.core.GaussianEstimator
 
getMean(int) - Method in class moa.evaluation.MeasureCollection
 
getMeanError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getMeanError() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getMeanRunningTime() - Method in class moa.evaluation.MeasureCollection
 
getMeasure(String) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the value of the named measure.
getMeasureCollection() - Method in enum moa.gui.PreviewPanel.TypePanel
 
getMeasurement(int, int) - Method in class moa.evaluation.LearningCurve
 
getMeasurementName(int) - Method in class moa.evaluation.LearningCurve
 
getMeasurementNamed(String, Measurement[]) - Static method in class moa.core.Measurement
 
getMeasurements() - Method in class moa.evaluation.LearningEvaluation
 
getMeasurementsDescription(Measurement[], StringBuilder, int) - Static method in class moa.core.Measurement
 
getMeasurePerformance() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Gets whether performance statistics are being calculated or not.
getMeasures() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getMeasures() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getMeasureSelected() - Method in class moa.gui.visualization.GraphCanvas
 
getMeasureValue(String) - Method in class moa.cluster.Cluster
 
getMeasureValue(String) - Method in class moa.gui.visualization.DataPoint
 
getMedian(int) - Method in class moa.evaluation.MeasureCollection
 
GetMemoryUsage() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in interface moa.classifiers.core.splitcriteria.SplitCriterion
Computes the merit of splitting for a given ditribution before the split and after it.
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
getMeritOfSplit(double[], double[][]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
getMessage() - Method in class moa.streams.clustering.ClusterEvent
 
getMicroClustering() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getMicroClusteringResult() - Method in class moa.clusterers.AbstractClusterer
 
getMicroClusteringResult() - Method in interface moa.clusterers.Clusterer
 
getMicroClusteringResult() - Method in class moa.clusterers.ClusterGenerator
 
getMicroClusteringResult() - Method in class moa.clusterers.clustream.Clustream
 
getMicroClusteringResult() - Method in class moa.clusterers.clustream.WithKmeans
 
getMicroClusteringResult() - Method in class moa.clusterers.clustree.ClusTree
 
getMicroClusteringResult() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getMicroClusteringResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getMicroClusters() - Method in interface moa.clusterers.macro.IDenseMacroCluster
 
getMicroClusters() - Method in class moa.clusterers.macro.NonConvexCluster
 
getMiddle(double[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns value in the middle of the two parameter values.
getMinBoxRelWidth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Gets the minimum relative box width.
getMinimumValue() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
GetMinPrecNeigh(Long) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
GetMinPrecNeigh(Long) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
getMinRating() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getMinRating() - Method in interface moa.recommender.rc.data.RecommenderData
 
getMinValue(int) - Method in class moa.evaluation.MeasureCollection
 
getMinValue() - Method in class moa.options.FloatOption
 
getMinValue() - Method in class moa.options.IntOption
 
getModelAttIndexToInstanceAttIndex(int, Instance) - Method in class moa.classifiers.rules.AbstractAMRules
 
getModelContext() - Method in class moa.classifiers.AbstractClassifier
 
getModelContext() - Method in interface moa.classifiers.Classifier
Gets the reference to the header of the data stream.
getModelContext() - Method in class moa.clusterers.AbstractClusterer
 
getModelContext() - Method in interface moa.clusterers.Clusterer
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.AbstractClassifier
Returns a string representation of the model.
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.active.ActiveClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.bayes.NaiveBayes
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.MajorityClass
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.NoChange
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.Perceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SGD
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SGDMultiClass
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.functions.SPegasos
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNN
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNNwithPAW
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.ADACC
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.DACC
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.LeveragingBag
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.LimAttClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OCBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBag
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBagAdwin
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBagASHT
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBoost
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.RandomRules
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.meta.WEKAClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.AbstractAMRules
print GUI learn model
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.AMRulesRegressor
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.Perceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.functions.TargetMean
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.DecisionStump
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.FIMTDD
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.HoeffdingTree
 
getModelDescription(StringBuilder, int) - Method in class moa.classifiers.trees.ORTO
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.AbstractClusterer
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.ClusterGenerator
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustream.Clustream
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustream.WithKmeans
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.clustree.ClusTree
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.CobWeb
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.denstream.WithDBSCAN
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.streamkm.StreamKM
 
getModelDescription(StringBuilder, int) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getModelDescription(StringBuilder, int) - Method in class moa.learners.ChangeDetectorLearner
 
getModelDescriptionNoAnomalyDetection(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
getModelMeasurements() - Method in class moa.classifiers.AbstractClassifier
 
getModelMeasurements() - Method in interface moa.classifiers.Classifier
Gets the current measurements of this classifier.
getModelMeasurements() - Method in class moa.clusterers.AbstractClusterer
 
getModelMeasurements() - Method in interface moa.clusterers.Clusterer
 
getModelMeasurementsImpl() - Method in class moa.classifiers.AbstractClassifier
Gets the current measurements of this classifier.

The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.
getModelMeasurementsImpl() - Method in class moa.classifiers.active.ActiveClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.bayes.NaiveBayes
 
getModelMeasurementsImpl() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
getModelMeasurementsImpl() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.MajorityClass
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.NoChange
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.Perceptron
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SGD
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SGDMultiClass
 
getModelMeasurementsImpl() - Method in class moa.classifiers.functions.SPegasos
 
getModelMeasurementsImpl() - Method in class moa.classifiers.lazy.kNN
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Adds ensemble weights to the measurements.
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Adds ensemble weights to the measurements.
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.ADACC
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.DACC
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.LeveragingBag
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.LimAttClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OCBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Adds ensemble weights to the measurements.
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBag
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBagAdwin
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBoost
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.RandomRules
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getModelMeasurementsImpl() - Method in class moa.classifiers.meta.WEKAClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.multilabel.MajorityLabelset
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.AbstractAMRules
print GUI evaluate model
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.Perceptron
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.functions.TargetMean
 
getModelMeasurementsImpl() - Method in class moa.classifiers.rules.RuleClassifier
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.DecisionStump
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.FIMTDD
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.HoeffdingTree
 
getModelMeasurementsImpl() - Method in class moa.classifiers.trees.ORTO
 
getModelMeasurementsImpl() - Method in class moa.clusterers.AbstractClusterer
 
getModelMeasurementsImpl() - Method in class moa.clusterers.ClusterGenerator
 
getModelMeasurementsImpl() - Method in class moa.clusterers.clustream.Clustream
 
getModelMeasurementsImpl() - Method in class moa.clusterers.clustream.WithKmeans
 
getModelMeasurementsImpl() - Method in class moa.clusterers.clustree.ClusTree
 
getModelMeasurementsImpl() - Method in class moa.clusterers.CobWeb
 
getModelMeasurementsImpl() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getModelMeasurementsImpl() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getModelMeasurementsImpl() - Method in class moa.clusterers.streamkm.StreamKM
 
getModelMeasurementsImpl() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getModelMeasurementsImpl() - Method in class moa.learners.ChangeDetectorLearner
 
getModelQuality() - Method in class moa.evaluation.CMM_GTAnalysis
Calculates the relative number of errors being caused by the underlying cluster model
getN() - Method in class moa.cluster.CFCluster
 
getName() - Method in class moa.clusterers.clustream.Clustream
 
getName() - Method in class moa.clusterers.clustream.WithKmeans
 
getName(int) - Static method in class moa.clusterers.macro.ColorArray
 
getName() - Method in class moa.clusterers.macro.ColorObject
 
getName() - Method in class moa.core.Measurement
 
getName(int) - Method in class moa.evaluation.MeasureCollection
 
getName() - Method in class moa.options.AbstractOption
 
getName() - Method in interface moa.options.Option
Gets the name of this option
getNames() - Method in class moa.evaluation.Accuracy
 
getNames() - Method in class moa.evaluation.ChangeDetectionMeasures
 
getNames() - Method in class moa.evaluation.CMM
 
getNames() - Method in class moa.evaluation.EntropyCollection
 
getNames() - Method in class moa.evaluation.F1
 
getNames() - Method in class moa.evaluation.General
 
getNames() - Method in class moa.evaluation.MeasureCollection
 
getNames() - Method in class moa.evaluation.OutlierPerformance
 
getNames() - Method in class moa.evaluation.RegressionAccuracy
 
getNames() - Method in class moa.evaluation.SilhouetteCoefficient
 
getNames() - Method in class moa.evaluation.SSQ
 
getNames() - Method in class moa.evaluation.StatisticalCollection
 
getNanoCPUTimeOfCurrentThread() - Static method in class moa.core.TimingUtils
 
getNanoCPUTimeOfThread(long) - Static method in class moa.core.TimingUtils
 
getNbActiveClassifiers() - Method in class moa.classifiers.meta.ADACC
 
getNbActiveClassifiers() - Method in class moa.classifiers.meta.DACC
Returns the number of classifiers used for prediction which includes the adaptive learners and the snapshots in ADACC
getNbAdaptiveClassifiers() - Method in class moa.classifiers.meta.ADACC
 
getNbAdaptiveClassifiers() - Method in class moa.classifiers.meta.DACC
Returns the number of adaptive classifiers in the ensemble which excludes the static snapshots in ADACC
getNearest(DATA, double, int) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbor query on the M-Tree, constrained by distance and/or the number of neighbors.
getNearest(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbor query on the M-Tree, without constraints.
getNearestByLimit(DATA, int) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbors query on the M-Tree, constrained by the number of neighbors.
getNearestByRange(DATA, double) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Performs a nearest-neighbors query on the M-Tree, constrained by distance.
getNewMeasureCollection() - Method in class moa.gui.TaskTextViewerPanel
 
getNext() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
getNode() - Method in class moa.clusterers.clustree.Entry
 
getNodeList() - Method in class moa.classifiers.rules.core.Rule
 
GetNodesCount() - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
getNodeSplitter() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the splitting method currently in use to split the nodes of the KDTree.
getNodeStatistics() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getNoiseLabel() - Method in class moa.gui.visualization.DataPoint
 
getNoiseSeparability() - Method in class moa.evaluation.CMM_GTAnalysis
Calculates how well noise is separable from the given clusters Small values indicate bad separability, values close to 1 indicate good separability
getNominalValueString(int, int) - Method in class moa.classifiers.AbstractClassifier
Gets the name of a value of an attribute from the header.
getNominalValueString(int, int) - Method in class moa.clusterers.AbstractClusterer
 
getNominalValueString(InstancesHeader, int, int) - Static method in class moa.core.InstancesHeader
 
getNormalizedError(Instance) - Method in class moa.classifiers.trees.FIMTDD
 
getNormalizedPrediction(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getNormalizeNodeWidth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Gets the normalize flag.
getNrOfClasses() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Counts the number of classes that are present in the data set.
getNrOfDimensions() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns the number of features (label attribute excluded).
getNrOfDimensions() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Return the dimension of the objects in the DataSet.
getNullString() - Method in class moa.options.AbstractClassOption
Gets the null string of this option.
getNumberAttributes() - Method in class moa.classifiers.functions.Perceptron
 
getNumberChanges() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumberChangesOccurred() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumberClasses() - Method in class moa.classifiers.functions.Perceptron
 
getNumberDetections() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getNumberDetections() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumberOfGT0Classes() - Method in class moa.evaluation.CMM_GTAnalysis
Number of classes/clusters of the new clustering
getNumberOfValues(int) - Method in class moa.evaluation.MeasureCollection
 
getNumberVotes() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
getNumberVotes() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
The number of votes added so far.
getNumberWarnings() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getNumBytesWritten() - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
getNumClasses() - Method in class moa.evaluation.MembershipMatrix
 
getNumClassLabels() - Method in class moa.core.MultilabelInstancesHeader
 
getNumColors() - Static method in class moa.clusterers.macro.ColorArray
 
getNumericValueString(InstancesHeader, int, double) - Static method in class moa.core.InstancesHeader
 
getNumFeatures() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getNumItems() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getNumItems() - Method in interface moa.recommender.rc.data.RecommenderData
 
getNumLabels() - Method in class moa.core.MultilabelInstance
 
getNumLeft() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
getNumMeasures() - Method in class moa.evaluation.MeasureCollection
 
getNumRatings() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getNumRatings() - Method in interface moa.recommender.rc.data.RecommenderData
 
getNumRootSplits() - Method in class moa.clusterers.clustree.ClusTree
Return the number of time the tree has grown in size.
getNumSubtrees() - Method in class moa.classifiers.trees.ORTO.Node
 
getNumSubtrees() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
getNumSubtrees() - Method in class moa.classifiers.trees.ORTO.SplitNode
 
getNumUsers() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getNumUsers() - Method in interface moa.recommender.rc.data.RecommenderData
 
getObject(int) - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns the DataObject at the given position.
getObject(String, String) - Static method in class moa.gui.GUIDefaults
Tries to instantiate the class stored for this property, optional options will be set as well.
getObject(String, String, Class) - Static method in class moa.gui.GUIDefaults
Tries to instantiate the class stored for this property, optional options will be set as well.
getObjectInfo(Object) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getObjectInfo(Object) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
getObjectInfo() - Method in class moa.gui.visualization.PointPanel
 
getObjectNamed(String) - Method in interface moa.core.ObjectRepository
 
getObservedClassDistribution() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
getObservedClassDistribution() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
getOption(String) - Method in class moa.options.Options
 
getOption(char) - Method in class moa.options.Options
 
getOptionArray() - Method in class moa.options.Options
 
getOptionLabels() - Method in class moa.options.MultiChoiceOption
 
getOptions() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Gets the current settings of the object.
getOptions() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getOptions() - Method in class moa.options.AbstractOptionHandler
 
getOptions() - Method in interface moa.options.OptionHandler
Gets the options of this object
getOptions() - Method in class weka.classifiers.meta.MOA
Gets the current settings of the Classifier.
getOptions() - Method in class weka.datagenerators.classifiers.classification.MOA
Gets the current settings of the datagenerator.
getOrderingMeasurementName() - Method in class moa.evaluation.LearningCurve
 
getOutlierer0() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getOutlierer1() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getOutlierScore(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
GetOutliersFound() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getOutliersResult() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getOutliersVisibility() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getOutput() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets the output state of the change detection.
getOutput() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets the output state of the change detection.
getOwner() - Method in class moa.classifiers.rules.core.Rule.Builder
 
getParameterString() - Method in class moa.clusterers.denstream.WithDBSCAN
 
getParameterString() - Method in class moa.evaluation.CMM
 
getParameterString() - Method in class moa.evaluation.CMM_GTAnalysis
String with main CMM parameters
getParameterString() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getParent() - Method in class moa.classifiers.trees.FIMTDD.Node
Return the parent node
getParent() - Method in class moa.classifiers.trees.ORTO.Node
Return the parent node
getParentEntry() - Method in class moa.clusterers.clustree.Entry
 
getPauseInterval() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getPauseInterval() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getPerceptron() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getPerformanceMeasurements() - Method in interface moa.evaluation.ClassificationPerformanceEvaluator
Gets the current measurements monitored by this evaluator.
getPerformanceMeasurements() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
getPerformanceMeasurements() - Method in interface moa.evaluation.LearningPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
getPerformanceMeasurements() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getPHError(Instance) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
getPoint(int) - Method in class moa.evaluation.CMM_GTAnalysis
Get CMM internal point
getPointColorbyClass(DataPoint, float) - Static method in class moa.gui.visualization.PointPanel
 
getPointVisibility() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.Rule
 
getPrediction(Instance) - Method in class moa.classifiers.rules.core.Rule
 
getPrediction(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getPrediction(Instance, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getPrediction(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
getPrediction(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.Node
 
getPrediction(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.Node
 
getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.OptionNode
 
getPrediction(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.SplitNode
 
getPredictionError() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getPredictionModel(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
Retrieve the class votes using the perceptron learner
getPredictionTargetMean(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
getPreferredSize() - Method in class moa.gui.visualization.GraphCurve
 
getPreMaterializedObject() - Method in class moa.options.AbstractClassOption
Returns the current object.
getPreparedClassOption(ClassOption) - Method in class moa.options.AbstractOptionHandler
Gets a prepared option of this class.
getPreparedClassOption(ClassOptionWithNames) - Method in class moa.options.AbstractOptionHandler
Gets a prepared option of this class.
getPreview(ResultPreviewListener) - Method in class moa.tasks.TaskThread
 
getProcessFrequency() - Method in class moa.gui.visualization.GraphCanvas
 
getProgressFraction() - Method in class moa.core.InputStreamProgressMonitor
 
getProperties() - Static method in class moa.gui.GUIDefaults
returns the associated properties file.
getPropotionBelow(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getPurpose() - Method in class moa.options.AbstractOption
 
getPurpose() - Method in interface moa.options.Option
Gets the purpose of this option
getPurposeString() - Method in class moa.classifiers.AbstractClassifier
 
getPurposeString() - Method in class moa.classifiers.active.ActiveClassifier
 
getPurposeString() - Method in class moa.classifiers.bayes.NaiveBayes
 
getPurposeString() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
getPurposeString() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getPurposeString() - Method in class moa.classifiers.functions.MajorityClass
 
getPurposeString() - Method in class moa.classifiers.functions.NoChange
 
getPurposeString() - Method in class moa.classifiers.functions.Perceptron
 
getPurposeString() - Method in class moa.classifiers.functions.SGD
 
getPurposeString() - Method in class moa.classifiers.functions.SGDMultiClass
 
getPurposeString() - Method in class moa.classifiers.functions.SPegasos
 
getPurposeString() - Method in class moa.classifiers.lazy.kNN
 
getPurposeString() - Method in class moa.classifiers.lazy.kNNwithPAW
 
getPurposeString() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
getPurposeString() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
getPurposeString() - Method in class moa.classifiers.meta.ADACC
 
getPurposeString() - Method in class moa.classifiers.meta.DACC
 
getPurposeString() - Method in class moa.classifiers.meta.LeveragingBag
 
getPurposeString() - Method in class moa.classifiers.meta.LimAttClassifier
 
getPurposeString() - Method in class moa.classifiers.meta.OCBoost
 
getPurposeString() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBag
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBagAdwin
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBagASHT
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBoost
 
getPurposeString() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getPurposeString() - Method in class moa.classifiers.meta.RandomRules
 
getPurposeString() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getPurposeString() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getPurposeString() - Method in class moa.classifiers.meta.WEKAClassifier
 
getPurposeString() - Method in class moa.classifiers.rules.RuleClassifier
 
getPurposeString() - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree
 
getPurposeString() - Method in class moa.classifiers.trees.ASHoeffdingTree
 
getPurposeString() - Method in class moa.classifiers.trees.DecisionStump
 
getPurposeString() - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
getPurposeString() - Method in class moa.classifiers.trees.FIMTDD
 
getPurposeString() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
getPurposeString() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getPurposeString() - Method in class moa.classifiers.trees.HoeffdingTree
 
getPurposeString() - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
getPurposeString() - Method in class moa.classifiers.trees.ORTO
 
getPurposeString() - Method in class moa.classifiers.trees.RandomHoeffdingTree
 
getPurposeString() - Method in class moa.clusterers.AbstractClusterer
 
getPurposeString() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getPurposeString() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getPurposeString() - Method in class moa.options.AbstractOptionHandler
 
getPurposeString() - Method in interface moa.options.OptionHandler
Gets the purpose of this object
getPurposeString() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
getPurposeString() - Method in class moa.recommender.dataset.impl.JesterDataset
 
getPurposeString() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
getPurposeString() - Method in class moa.streams.ArffFileStream
 
getPurposeString() - Method in class moa.streams.clustering.FileStream
 
getPurposeString() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
getPurposeString() - Method in class moa.streams.ConceptDriftRealStream
 
getPurposeString() - Method in class moa.streams.ConceptDriftStream
 
getPurposeString() - Method in class moa.streams.FilteredStream
 
getPurposeString() - Method in class moa.streams.filters.AddNoiseFilter
 
getPurposeString() - Method in class moa.streams.filters.CacheFilter
 
getPurposeString() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
getPurposeString() - Method in class moa.streams.generators.AgrawalGenerator
 
getPurposeString() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
getPurposeString() - Method in class moa.streams.generators.HyperplaneGenerator
 
getPurposeString() - Method in class moa.streams.generators.LEDGenerator
 
getPurposeString() - Method in class moa.streams.generators.LEDGeneratorDrift
 
getPurposeString() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
getPurposeString() - Method in class moa.streams.generators.multilabel.MultilabelArffFileStream
 
getPurposeString() - Method in class moa.streams.generators.RandomRBFGenerator
 
getPurposeString() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
getPurposeString() - Method in class moa.streams.generators.RandomTreeGenerator
 
getPurposeString() - Method in class moa.streams.generators.SEAGenerator
 
getPurposeString() - Method in class moa.streams.generators.STAGGERGenerator
 
getPurposeString() - Method in class moa.streams.generators.WaveformGenerator
 
getPurposeString() - Method in class moa.streams.generators.WaveformGeneratorDrift
 
getPurposeString() - Method in class moa.streams.MultiFilteredStream
 
getPurposeString() - Method in class moa.tasks.CacheShuffledStream
 
getPurposeString() - Method in class moa.tasks.EvaluateClustering
 
getPurposeString() - Method in class moa.tasks.EvaluateConceptDrift
 
getPurposeString() - Method in class moa.tasks.EvaluateInterleavedChunks
 
getPurposeString() - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
 
getPurposeString() - Method in class moa.tasks.EvaluateModel
 
getPurposeString() - Method in class moa.tasks.EvaluateModelRegression
 
getPurposeString() - Method in class moa.tasks.EvaluateOnlineRecommender
 
getPurposeString() - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequential
 
getPurposeString() - Method in class moa.tasks.EvaluatePrequentialRegression
 
getPurposeString() - Method in class moa.tasks.LearnModel
 
getPurposeString() - Method in class moa.tasks.LearnModelRegression
 
getPurposeString() - Method in class moa.tasks.MeasureStreamSpeed
 
getPurposeString() - Method in class moa.tasks.Plot
 
getPurposeString() - Method in class moa.tasks.RunStreamTasks
 
getPurposeString() - Method in class moa.tasks.RunTasks
 
getPurposeString() - Method in class moa.tasks.WriteStreamToARFFFile
 
getQuantile(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getRadius() - Method in class moa.cluster.CFCluster
See interface Cluster
getRadius() - Method in class moa.cluster.SphereCluster
 
getRadius() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getRadius() - Method in class moa.clusterers.clustree.ClusKernel
See interface Cluster
getRadius() - Method in class moa.clusterers.denstream.MicroCluster
 
getRadius(long) - Method in class moa.clusterers.denstream.MicroCluster
 
getRadius() - Method in class moa.clusterers.macro.NonConvexCluster
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
getRangeOfMerit(double[]) - Method in interface moa.classifiers.core.splitcriteria.SplitCriterion
Computes the range of splitting merit
getRangeOfMerit(double[]) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
getRangeOfMerit(double[]) - Method in class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
getRanges() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Method to get the ranges.
getRating(int, int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getRating(int, int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getRatingsItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getRatingsItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getRatingsUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getRatingsUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
getRawLevel() - Method in class moa.clusterers.clustree.Node
Return the level number in the node.
getRelevanceStamp() - Method in class moa.clusterers.clustream.ClustreamKernel
 
getRelevantLabels(Instance) - Method in class moa.core.utils.Converter
 
getRequiredType() - Method in class moa.options.AbstractClassOption
Gets the class type of this option.
getRevision() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Returns the revision string.
getRevision() - Method in class weka.classifiers.meta.MOA
Returns the revision string.
getRevision() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns the revision string.
getRightStreamPanel() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
getRightStreamPanel() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getRowCount() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getRowCount() - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getRowCount() - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getRuleMajorityClassIndex(RuleClassification) - Method in class moa.classifiers.rules.RuleClassifier
 
getRuleNumberID() - Method in class moa.classifiers.rules.core.Rule
 
getSaveInstanceData() - Method in class moa.clusterers.CobWeb
Get the value of saveInstances.
getSecond() - Method in class moa.recommender.rc.utils.Pair
 
getSelectedCurrenTask() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
getSelectedMeasures() - Method in class moa.gui.clustertab.ClusteringEvalPanel
 
getSelectedMeasures() - Method in class moa.gui.outliertab.OutlierEvalPanel
 
getSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
getSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
getShapeToPlot() - Method in class moa.gui.LineGraphViewPanel.PlotLine
 
getSimplePrediction() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getSimplePrediction() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getSingleLineDescription(StringBuilder) - Method in class moa.core.DoubleVector
 
getSingleLineDescription(StringBuilder, int) - Method in class moa.core.DoubleVector
 
getSingleModeFlag() - Method in class weka.datagenerators.classifiers.classification.MOA
Return if single mode is set for the given data generator mode depends on option setting and or generator type.
getSkipIdentical() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Gets whether if identical instances are skipped from the neighbourhood.
GetSpeed() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getSplitDim() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Gets the splitting dimension.
getSplitIndex() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getSplitPointSuggestions() - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
getSplitTest() - Method in class moa.classifiers.rules.nodes.RuleSplitNode
 
getSplitValue() - Method in class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
getSplitValue() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Gets the splitting value.
getSplitValue() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
getSquaredError() - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
Returns the squared error, for use in determining if an alternate tree is performing better than an original tree, or if the alternate tree should be deleted
getSquareError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getSquareError() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getStackTraceString(Exception) - Static method in class moa.core.MiscUtils
 
getStateString() - Method in class moa.options.AbstractOption
 
getStateString() - Method in class moa.options.FlagOption
 
getStateString() - Method in interface moa.options.Option
Gets the state of this option in human readable form
getStatistics() - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
getStatistics() - Method in class moa.clusterers.outliers.Angiulli.STORMBase
 
getStatistics() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
getStatistics() - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
getStatistics() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getStatistics() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
getStatisticsBranchSplit() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getStatisticsNewRuleActiveLearningNode() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getStatisticsOtherBranchSplit() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
getStdDev() - Method in class moa.core.GaussianEstimator
 
getStream() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getStream() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getStream0() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
getStream0() - Method in class moa.gui.outliertab.OutlierSetupTab
 
getStreamValueAsCLIString() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
getStreamValueAsCLIString() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
getStringValues() - Static method in enum moa.tasks.Plot.LegendLocation
Get string values for the enum values.
getStringValues() - Static method in enum moa.tasks.Plot.LegendType
Get string values for the enum values.
getStringValues() - Static method in enum moa.tasks.Plot.PlotStyle
Get string values for the enum values.
getStringValues() - Static method in enum moa.tasks.Plot.Terminal
Get string values for the enum values.
getSubClassifiers() - Method in class moa.classifiers.AbstractClassifier
 
getSubClassifiers() - Method in interface moa.classifiers.Classifier
Gets the classifiers of this ensemble.
getSubClassifiers() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
getSubClassifiers() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
getSubClassifiers() - Method in class moa.classifiers.meta.DACC
 
getSubClassifiers() - Method in class moa.classifiers.meta.LeveragingBag
 
getSubClassifiers() - Method in class moa.classifiers.meta.LimAttClassifier
 
getSubClassifiers() - Method in class moa.classifiers.meta.OCBoost
 
getSubClassifiers() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
getSubClassifiers() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBag
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBagAdwin
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBoost
 
getSubClassifiers() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getSubClassifiers() - Method in class moa.classifiers.meta.RandomRules
 
getSubClassifiers() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getSubClusterers() - Method in class moa.clusterers.AbstractClusterer
 
getSubClusterers() - Method in interface moa.clusterers.Clusterer
 
getSuggestedCutpoints() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getSVGString(int) - Method in class moa.gui.visualization.ClusterPanel
 
getSVGString(int) - Method in class moa.gui.visualization.OutlierPanel
 
getSVGString(int) - Method in class moa.gui.visualization.PointPanel
 
getSymbol() - Method in class moa.classifiers.rules.Predicates
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
getTableCellRendererComponent(JTable, Object, boolean, boolean, int, int) - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
getTabs() - Static method in class moa.gui.GUIDefaults
returns an array with the classnames of all the additional panels to display as tabs in the GUI.
getTabTitle() - Method in class moa.gui.AbstractTabPanel
Returns the string to display as title of the tab.
getTabTitle() - Method in class moa.gui.ClassificationTabPanel
 
getTabTitle() - Method in class moa.gui.clustertab.ClusteringTabPanel
 
getTabTitle() - Method in class moa.gui.ConceptDriftTabPanel
 
getTabTitle() - Method in class moa.gui.outliertab.OutlierTabPanel
 
getTabTitle() - Method in class moa.gui.RegressionTabPanel
 
getTargetMean() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getTargetMeanError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getTargetSquareError() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getTask() - Method in class moa.tasks.TaskThread
 
getTaskName() - Method in class moa.tasks.AbstractTask
Gets the name of this task.
getTaskResultType() - Method in class moa.tasks.CacheShuffledStream
 
getTaskResultType() - Method in class moa.tasks.EvaluateClustering
 
getTaskResultType() - Method in class moa.tasks.EvaluateConceptDrift
 
getTaskResultType() - Method in class moa.tasks.EvaluateInterleavedChunks
Defines the task's result type.
getTaskResultType() - Method in class moa.tasks.EvaluateInterleavedTestThenTrain
 
getTaskResultType() - Method in class moa.tasks.EvaluateModel
 
getTaskResultType() - Method in class moa.tasks.EvaluateModelRegression
 
getTaskResultType() - Method in class moa.tasks.EvaluateOnlineRecommender
 
getTaskResultType() - Method in class moa.tasks.EvaluatePeriodicHeldOutTest
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequential
 
getTaskResultType() - Method in class moa.tasks.EvaluatePrequentialRegression
 
getTaskResultType() - Method in class moa.tasks.LearnModel
 
getTaskResultType() - Method in class moa.tasks.LearnModelRegression
 
getTaskResultType() - Method in class moa.tasks.MeasureStreamSpeed
 
getTaskResultType() - Method in class moa.tasks.Plot
Defines the task's result type.
getTaskResultType() - Method in class moa.tasks.RunStreamTasks
 
getTaskResultType() - Method in class moa.tasks.RunTasks
 
getTaskResultType() - Method in interface moa.tasks.Task
Gets the result type of this task.
getTaskResultType() - Method in class moa.tasks.WriteStreamToARFFFile
 
getTimePerObj() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getTimestamp() - Method in class moa.clusterers.clustree.Entry
Return the current timestamp.
getTimestamp() - Method in class moa.clusterers.denstream.Timestamp
 
getTimestamp() - Method in class moa.gui.visualization.DataPoint
 
getTimestamp() - Method in class moa.streams.clustering.ClusterEvent
 
getToolTipText() - Method in class moa.gui.visualization.PointPanel
 
getTotal() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getTotal() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
getTotalCount() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getTotalDelay() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getTotalEntries() - Method in class moa.evaluation.MembershipMatrix
 
getTotalWeightObserved() - Method in class moa.core.GaussianEstimator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
getTotalWeightObserved() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
getType() - Method in class moa.streams.clustering.ClusterEvent
 
getUpperQuartile(int) - Method in class moa.evaluation.MeasureCollection
 
getUserFeatures(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
getUsers() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
getUsers() - Method in interface moa.recommender.rc.data.RecommenderData
 
getValue() - Method in class moa.classifiers.meta.DACC.Pair
 
getValue() - Method in class moa.classifiers.rules.Predicates
 
getValue(int) - Method in class moa.core.DoubleVector
 
getValue() - Method in class moa.core.Measurement
 
getValue(int, int) - Method in class moa.evaluation.MeasureCollection
 
getValue() - Method in class moa.options.FloatOption
 
getValue() - Method in class moa.options.IntOption
 
getValue() - Method in class moa.options.StringOption
 
getValueAsCLIString() - Method in class moa.options.AbstractClassOption
 
getValueAsCLIString() - Method in class moa.options.ClassOption
 
getValueAsCLIString() - Method in class moa.options.ClassOptionWithNames
 
getValueAsCLIString() - Method in class moa.options.FlagOption
 
getValueAsCLIString() - Method in class moa.options.FloatOption
 
getValueAsCLIString() - Method in class moa.options.IntOption
 
getValueAsCLIString() - Method in class moa.options.ListOption
 
getValueAsCLIString() - Method in class moa.options.MultiChoiceOption
 
getValueAsCLIString() - Method in interface moa.options.Option
Gets the value of a Command Line Interface text as a string
getValueAsCLIString() - Method in class moa.options.StringOption
 
getValueAsCLIString() - Method in class moa.options.WEKAClassOption
 
getValueAt(int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
getValueAt(int, int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
getValueAt(int, int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
getVariance() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getVariance() - Method in class moa.core.GaussianEstimator
 
getVariances() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Calculates the variance of this data set for each dimension
getVarianceVector() - Method in class moa.clusterers.clustree.ClusKernel
 
getVotesForInstance(Instance) - Method in class moa.classifiers.active.ActiveClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.bayes.NaiveBayes
 
getVotesForInstance(Instance) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in interface moa.classifiers.Classifier
Predicts the class memberships for a given instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.MajorityClass
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.NoChange
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.Perceptron
 
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SGD
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SGDMultiClass
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.functions.SPegasos
Calculates the class membership probabilities for the given test instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.lazy.kNN
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Predicts a class for an example.
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Predicts a class for an example.
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.DACC
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.LeveragingBag
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.LimAttClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OCBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Predicts a class for an example.
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBag
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBagAdwin
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBagASHT
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBoost
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.RandomRules
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
getVotesForInstance(Instance) - Method in class moa.classifiers.meta.WEKAClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.meta.MLOzaBag
 
getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.meta.MLOzaBagAdwin
 
getVotesForInstance(Instance) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
getVotesForInstance extension of the instance method getVotesForInstance in moa.classifier.java returns the prediction of the instance.
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.FadingTargetMean
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.functions.TargetMean
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
getVotesForInstance(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.DecisionStump
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.FIMTDD
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.HoeffdingTree
 
getVotesForInstance(Instance) - Method in class moa.classifiers.trees.ORTO
 
getVotesForInstance(Instance) - Method in interface moa.clusterers.Clusterer
 
getVotesForInstance(Instance) - Method in class moa.clusterers.ClusterGenerator
 
getVotesForInstance(Instance) - Method in class moa.clusterers.clustream.Clustream
 
getVotesForInstance(Instance) - Method in class moa.clusterers.clustream.WithKmeans
 
getVotesForInstance(Instance) - Method in class moa.clusterers.clustree.ClusTree
 
getVotesForInstance(Instance) - Method in class moa.clusterers.CobWeb
Classifies a given instance.
getVotesForInstance(Instance) - Method in class moa.clusterers.denstream.WithDBSCAN
 
getVotesForInstance(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
getVotesForInstance(Instance) - Method in class moa.clusterers.streamkm.StreamKM
 
getVotesForInstance(Instance) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
getVotesForInstance(Instance) - Method in class moa.learners.ChangeDetectorLearner
 
getVotesForInstanceBinary(Instance) - Method in class moa.classifiers.meta.LeveragingBag
 
getVotesForInstanceBinary(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
getVotesForInstancePerceptron(double[][], int[], int) - Method in class moa.classifiers.meta.LimAttClassifier
 
getWaitWinFull() - Method in class moa.gui.outliertab.OutlierVisualTab
 
getWarning() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getWarningZone() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Gets whether the change detector is in the warning zone, after a warning alert and before a change alert.
getWarningZone() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Gets whether the change detector is in the warning zone, after a warning alert and before a change alert.
getWeight() - Method in class moa.cluster.CFCluster
See interface Cluster
getWeight() - Method in class moa.cluster.Cluster
Returns the weight of this cluster, not neccessarily normalized.
getWeight() - Method in class moa.cluster.SphereCluster
 
getWeight() - Method in class moa.clusterers.clustree.ClusKernel
 
getWeight() - Method in class moa.clusterers.denstream.MicroCluster
 
getWeightedError() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
getWeightedError() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Returns the weighted error.
getWeights() - Method in class moa.classifiers.functions.Perceptron
 
getWeights() - Method in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
getWeights() - Method in interface moa.classifiers.rules.core.voting.ErrorWeightedVote
Return the weights error.
getWeights() - Method in class moa.classifiers.rules.functions.Perceptron
 
getWeights() - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
getWeights() - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
getWeightSeen() - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
getWeightSeen() - Method in class moa.classifiers.rules.RuleClassifier
 
getWeightSeen() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
getWeightSeen() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
getWeightSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
getWeightSeenAtLastSplitEvaluation() - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
getWidth() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getWidthT() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
getWorkbenchInfoString() - Static method in class moa.core.Globals
 
getWorstError() - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
getWVDIndexes() - Method in class moa.classifiers.meta.DACC
Returns the classifiers that vote for the final prediction when the WVD combination function is selected
GiniSplitCriterion - Class in moa.classifiers.core.splitcriteria
Class for computing splitting criteria using Gini with respect to distributions of class values.
GiniSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns a string describing this object.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns a string describing this nearest neighbour search algorithm.
globalInfo() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns a string describing this object.
globalInfo() - Method in class weka.classifiers.meta.MOA
Returns a string describing the classifier.
globalInfo() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns a string describing this data generator.
Globals - Class in moa.core
Class for storing global information about current version of MOA.
Globals() - Constructor for class moa.core.Globals
 
gnuplotPathOption - Variable in class moa.tasks.Plot
Path to gunplot's binary directory, for example C:\Tools\Gnuplot\binary.
gracePeriodOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
gracePeriodOption - Variable in class moa.classifiers.rules.RuleClassifier
 
gracePeriodOption - Variable in class moa.classifiers.trees.DecisionStump
 
gracePeriodOption - Variable in class moa.classifiers.trees.FIMTDD
 
gracePeriodOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
gracePeriodOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
gracePeriodOption - Variable in class moa.classifiers.trees.ORTO
 
GradualChangeGenerator - Class in moa.streams.generators.cd
 
GradualChangeGenerator() - Constructor for class moa.streams.generators.cd.GradualChangeGenerator
 
graph() - Method in class moa.clusterers.CobWeb
Generates the graph string of the Cobweb tree
GraphAxes - Class in moa.gui.visualization
 
GraphAxes() - Constructor for class moa.gui.visualization.GraphAxes
Creates new form GraphAxes
GraphCanvas - Class in moa.gui.visualization
 
GraphCanvas() - Constructor for class moa.gui.visualization.GraphCanvas
Creates new form GraphCanvas
GraphCurve - Class in moa.gui.visualization
 
GraphCurve() - Constructor for class moa.gui.visualization.GraphCurve
Creates new form GraphCurve
greaterThan - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
GreenwaldKhannaNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute using Greenwald and Khanna methodology.
GreenwaldKhannaNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
GreenwaldKhannaQuantileSummary - Class in moa.core
Class for representing summaries of Greenwald and Khanna quantiles.
GreenwaldKhannaQuantileSummary(int) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary
 
GreenwaldKhannaQuantileSummary.Tuple - Class in moa.core
 
GreenwaldKhannaQuantileSummary.Tuple(double, long, long) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
GreenwaldKhannaQuantileSummary.Tuple(double) - Constructor for class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
gridBagConstraints - Variable in class moa.gui.TaskTextViewerPanel
 
growthAllowed - Variable in class moa.classifiers.trees.HoeffdingTree
 
GUI - Class in moa.gui
The main class for the MOA gui.
GUI() - Constructor for class moa.gui.GUI
 
GUIDefaults - Class in moa.gui
This class offers get methods for the default GUI settings in the props file moa/gui/GUI.props.
GUIDefaults() - Constructor for class moa.gui.GUIDefaults
 
GUIUtils - Class in moa.gui
This class offers util methods for displaying dialogs showing errors or exceptions.
GUIUtils() - Constructor for class moa.gui.GUIUtils
 

H

hasEmptyConstructor(Class<?>) - Static method in class moa.core.AutoClassDiscovery
 
Hash - Class in moa.recommender.rc.utils
 
Hash() - Constructor for class moa.recommender.rc.utils.Hash
 
hashCode() - Method in class moa.clusterers.outliers.AbstractC.StreamObj
 
hashCode() - Method in class moa.clusterers.outliers.Angiulli.StreamObj
 
hashCode() - Method in class moa.clusterers.outliers.MCOD.StreamObj
 
hashCode() - Method in class moa.clusterers.outliers.SimpleCOD.StreamObj
 
hashCode(int) - Static method in class moa.recommender.rc.utils.Hash
 
hasMore() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
hasMoreInstances() - Method in class moa.streams.ArffFileStream
 
hasMoreInstances() - Method in class moa.streams.CachedInstancesStream
 
hasMoreInstances() - Method in class moa.streams.clustering.FileStream
 
hasMoreInstances() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
hasMoreInstances() - Method in class moa.streams.ConceptDriftRealStream
 
hasMoreInstances() - Method in class moa.streams.ConceptDriftStream
 
hasMoreInstances() - Method in class moa.streams.FilteredStream
 
hasMoreInstances() - Method in class moa.streams.filters.AbstractStreamFilter
 
hasMoreInstances() - Method in class moa.streams.filters.CacheFilter
 
hasMoreInstances() - Method in class moa.streams.generators.AgrawalGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.HyperplaneGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.LEDGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.RandomRBFGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.RandomTreeGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.SEAGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.STAGGERGenerator
 
hasMoreInstances() - Method in class moa.streams.generators.WaveformGenerator
 
hasMoreInstances() - Method in interface moa.streams.InstanceStream
Gets whether this stream has more instances to output.
hasMoreInstances() - Method in class moa.streams.MultiFilteredStream
 
hasMoreTime() - Method in interface moa.clusterers.clustree.util.Budget
A function for the tree to ask if there is budget(time) left.
hasMoreTime() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
hasNext() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
 
hasNext() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
hasNext() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
hasNoiseClass() - Method in class moa.evaluation.MembershipMatrix
 
HDDM_A_Test - Class in moa.classifiers.core.driftdetection
Online drift detection method based on Hoeffding's bounds.
HDDM_A_Test() - Constructor for class moa.classifiers.core.driftdetection.HDDM_A_Test
 
HDDM_W_Test - Class in moa.classifiers.core.driftdetection
Online drift detection method based on McDiarmid's bounds.
HDDM_W_Test() - Constructor for class moa.classifiers.core.driftdetection.HDDM_W_Test
 
HDDM_W_Test.SampleInfo - Class in moa.classifiers.core.driftdetection
 
HDDM_W_Test.SampleInfo() - Constructor for class moa.classifiers.core.driftdetection.HDDM_W_Test.SampleInfo
 
header - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
headerToString() - Method in class moa.evaluation.LearningCurve
 
helpButton - Variable in class moa.gui.OptionsConfigurationPanel
 
hFunctions - Static variable in class moa.streams.generators.WaveformGenerator
 
highlight(boolean) - Method in class moa.gui.visualization.ClusterPanel
 
highlight(boolean) - Method in class moa.gui.visualization.OutlierPanel
 
highlight(boolean) - Method in class moa.gui.visualization.PointPanel
 
highligted - Variable in class moa.gui.visualization.ClusterPanel
 
highligted - Variable in class moa.gui.visualization.OutlierPanel
 
highligted - Variable in class moa.gui.visualization.PointPanel
 
HINGE - Static variable in class moa.classifiers.functions.SGD
 
HINGE - Static variable in class moa.classifiers.functions.SGDMultiClass
 
HINGE - Static variable in class moa.classifiers.functions.SPegasos
 
hitEndOfFile - Variable in class moa.streams.ArffFileStream
 
hitEndOfFile - Variable in class moa.streams.clustering.FileStream
 
HoeffdingAdaptiveTree - Class in moa.classifiers.trees
Hoeffding Adaptive Tree for evolving data streams.
HoeffdingAdaptiveTree() - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree
 
HoeffdingAdaptiveTree.AdaLearningNode - Class in moa.classifiers.trees
 
HoeffdingAdaptiveTree.AdaLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
HoeffdingAdaptiveTree.AdaSplitNode - Class in moa.classifiers.trees
 
HoeffdingAdaptiveTree.AdaSplitNode(InstanceConditionalTest, double[], int) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
HoeffdingAdaptiveTree.AdaSplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
HoeffdingAdaptiveTree.NewNode - Interface in moa.classifiers.trees
 
HoeffdingOptionTree - Class in moa.classifiers.trees
Hoeffding Option Tree.
HoeffdingOptionTree() - Constructor for class moa.classifiers.trees.HoeffdingOptionTree
 
HoeffdingOptionTree.ActiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.ActiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
HoeffdingOptionTree.FoundNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.FoundNode(HoeffdingOptionTree.Node, HoeffdingOptionTree.SplitNode, int) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
HoeffdingOptionTree.InactiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.InactiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.InactiveLearningNode
 
HoeffdingOptionTree.LearningNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.LearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.LearningNode
 
HoeffdingOptionTree.LearningNodeNB - Class in moa.classifiers.trees
 
HoeffdingOptionTree.LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNB
 
HoeffdingOptionTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
HoeffdingOptionTree.LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
HoeffdingOptionTree.Node - Class in moa.classifiers.trees
 
HoeffdingOptionTree.Node(double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.Node
 
HoeffdingOptionTree.SplitNode - Class in moa.classifiers.trees
 
HoeffdingOptionTree.SplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
HoeffdingTree - Class in moa.classifiers.trees
Hoeffding Tree or VFDT.
HoeffdingTree() - Constructor for class moa.classifiers.trees.HoeffdingTree
 
HoeffdingTree.ActiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingTree.ActiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
HoeffdingTree.FoundNode - Class in moa.classifiers.trees
 
HoeffdingTree.FoundNode(HoeffdingTree.Node, HoeffdingTree.SplitNode, int) - Constructor for class moa.classifiers.trees.HoeffdingTree.FoundNode
 
HoeffdingTree.InactiveLearningNode - Class in moa.classifiers.trees
 
HoeffdingTree.InactiveLearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.InactiveLearningNode
 
HoeffdingTree.LearningNode - Class in moa.classifiers.trees
 
HoeffdingTree.LearningNode(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.LearningNode
 
HoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
 
HoeffdingTree.LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.LearningNodeNB
 
HoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
HoeffdingTree.LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
HoeffdingTree.Node - Class in moa.classifiers.trees
 
HoeffdingTree.Node(double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.Node
 
HoeffdingTree.SplitNode - Class in moa.classifiers.trees
 
HoeffdingTree.SplitNode(InstanceConditionalTest, double[], int) - Constructor for class moa.classifiers.trees.HoeffdingTree.SplitNode
 
HoeffdingTree.SplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.trees.HoeffdingTree.SplitNode
 
HoeffdingTreeClassifLeaves - Class in moa.classifiers.multilabel
Hoeffding Tree that have a classifier at the leaves.
HoeffdingTreeClassifLeaves() - Constructor for class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
 
HoeffdingTreeClassifLeaves.LearningNodeClassifier - Class in moa.classifiers.multilabel
 
HoeffdingTreeClassifLeaves.LearningNodeClassifier(double[]) - Constructor for class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
HoeffdingTreeClassifLeaves.LearningNodeClassifier(double[], Classifier, HoeffdingTreeClassifLeaves) - Constructor for class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
horizonOption - Variable in class moa.clusterers.clustree.ClusTree
 
horizonOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
horizonOption - Variable in class moa.clusterers.WekaClusteringAlgorithm
 
HyperplaneGenerator - Class in moa.streams.generators
Stream generator for Hyperplane data stream.
HyperplaneGenerator() - Constructor for class moa.streams.generators.HyperplaneGenerator
 

I

id - Variable in class moa.classifiers.rules.core.Rule.Builder
 
id(int) - Method in class moa.classifiers.rules.core.Rule.Builder
 
ID - Variable in class moa.classifiers.trees.FIMTDD.Node
 
ID - Variable in class moa.classifiers.trees.ORTO.Node
 
id - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
id - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
id - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
id - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
id - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
IDenseMacroCluster - Interface in moa.clusterers.macro
 
illegalNameCharacters - Static variable in class moa.options.AbstractOption
Array of characters not valid to use in option names.
IMacroClusterer - Interface in moa.clusterers.macro
 
iMaxMemUsage - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
implementsMicroClusterer() - Method in class moa.clusterers.AbstractClusterer
 
implementsMicroClusterer() - Method in interface moa.clusterers.Clusterer
 
implementsMicroClusterer() - Method in class moa.clusterers.ClusterGenerator
 
implementsMicroClusterer() - Method in class moa.clusterers.clustream.Clustream
 
implementsMicroClusterer() - Method in class moa.clusterers.clustream.WithKmeans
Miscellaneous
implementsMicroClusterer() - Method in class moa.clusterers.clustree.ClusTree
 
implementsMicroClusterer() - Method in class moa.clusterers.denstream.WithDBSCAN
 
implementsMicroClusterer() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
improveObjectOnce(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.HoeffdingTree
 
inactiveLeafByteSizeEstimate - Variable in class moa.classifiers.trees.ORTO
 
inactiveLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
inactiveLeafNodeCount - Variable in class moa.classifiers.trees.HoeffdingTree
 
incrCutPoint - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
increase() - Method in class moa.clusterers.denstream.Timestamp
 
incrementValueOption - Variable in class moa.tasks.RunStreamTasks
 
incrementValueOption - Variable in class moa.tasks.RunTasks
 
independentBoundedConditionSum - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test.SampleInfo
 
index - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
the index of this element.
index - Variable in class moa.classifiers.meta.ADACC
Current stability index
indexCache - Variable in class moa.streams.filters.CacheFilter
 
InfoGainSplitCriterion - Class in moa.classifiers.core.splitcriteria
Class for computing splitting criteria using information gain with respect to distributions of class values.
InfoGainSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
InfoGainSplitCriterionMultilabel - Class in moa.classifiers.core.splitcriteria
Class for computing splitting criteria using information gain with respect to distributions of class values for Multilabel data.
InfoGainSplitCriterionMultilabel() - Constructor for class moa.classifiers.core.splitcriteria.InfoGainSplitCriterionMultilabel
 
InfoPanel - Class in moa.gui.visualization
 
InfoPanel(JFrame) - Constructor for class moa.gui.visualization.InfoPanel
Creates new form InfoPanel
Init() - Method in class moa.clusterers.outliers.AbstractC.AbstractC
 
Init() - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
Init() - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
Init() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
Init() - Method in class moa.clusterers.outliers.MCOD.MCOD
 
Init() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
Init() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
init() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
init() - Method in class moa.recommender.dataset.impl.JesterDataset
 
init() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
init() - Method in class moa.streams.filters.CacheFilter
 
initClassifiers - Variable in class moa.classifiers.meta.LimAttClassifier
 
initHeader(Instances) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
initialDBScan() - Method in class moa.clusterers.denstream.WithDBSCAN
 
initialisePerceptron - Variable in class moa.classifiers.rules.functions.Perceptron
 
initialize() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
initializes the ranges and the attributes being used.
initialize(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
initialize(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
initializeAlternateTree(FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
initializeAttributeIndices() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
initializes the attribute indices.
initialized - Variable in class moa.clusterers.streamkm.StreamKM
 
initializeEntry(Entry, long) - Method in class moa.clusterers.clustree.Entry
When this entry is empty, give it it's first values.
initializeRanges() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the ranges using all instances of the dataset.
initializeRanges(int[]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the ranges of a subset of the instances of this dataset.
initializeRanges(int[], int, int) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the ranges of a subset of the instances of this dataset.
initializeRangesEmpty(int, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Used to initialize the ranges.
initializeRuleStatistics(RuleClassification, Predicates, Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
initialNumInstancesOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
initialPauseInterval - Static variable in class moa.gui.visualization.RunOutlierVisualizer
the pause interval, being read from the gui at startup
initialPauseInterval - Static variable in class moa.gui.visualization.RunVisualizer
the pause interval, being read from the gui at startup
initKernels() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
initKm1 - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
initLearnRate - Variable in class moa.classifiers.trees.ORTO
 
initMatrixCodes - Variable in class moa.classifiers.meta.LeveragingBag
 
initMatrixCodes - Variable in class moa.classifiers.meta.LimAttClassifier
 
initMatrixCodes - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
InitNode() - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
initObject(int, double[]) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
initPointsOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
initVariables() - Method in class moa.classifiers.meta.ADACC
 
initVariables() - Method in class moa.classifiers.meta.DACC
Initializes the method variables
initVisualEvalPanel() - Method in class moa.gui.TaskTextViewerPanel
 
INMEM_PREFIX_STRING - Static variable in class moa.options.AbstractClassOption
The prefix text to use to indicate inmem.
input(double) - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Adding a numeric value to the change detector

The output of the change detector is modified after the insertion of a new item inside.
input(double) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
input(double) - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Adding a numeric value to the change detector

The output of the change detector is modified after the insertion of a new item inside.
input(double) - Method in class moa.classifiers.core.driftdetection.CusumDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.DDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.EDDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
input(double) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
input(boolean) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
input(double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
input(double) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
input(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
input(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
inputByteSize - Variable in class moa.core.InputStreamProgressMonitor
The number of bytes to read in total
inputBytesRead - Variable in class moa.core.InputStreamProgressMonitor
The number of bytes read so far
inputFilesOption - Variable in class moa.tasks.Plot
Comma separated list of input *csv files.
inputInstance - Variable in class moa.streams.ConceptDriftRealStream
 
inputStream - Variable in class moa.streams.ConceptDriftRealStream
 
inputStream - Variable in class moa.streams.ConceptDriftStream
 
inputStream - Variable in class moa.streams.filters.AbstractStreamFilter
The input stream to this filter.
InputStreamProgressMonitor - Class in moa.core
Class for monitoring the progress of reading an input stream.
InputStreamProgressMonitor(InputStream) - Constructor for class moa.core.InputStreamProgressMonitor
 
inputValues - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
inRanges(Instance, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Test if an instance is within the given ranges.
insert(Instance, long) - Method in class moa.clusterers.clustream.ClustreamKernel
 
insert(ClusKernel, Budget, long) - Method in class moa.clusterers.clustree.ClusTree
Insert a new point in the Tree.
insert(Instance, long) - Method in class moa.clusterers.denstream.MicroCluster
 
insert(CFCluster) - Method in class moa.clusterers.macro.NonConvexCluster
 
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
 
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
 
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
 
Insert(ISBIndex.ISBNode, Long) - Method in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
Insert(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
Insert(ISBIndex.ISBNode, Long) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
insert(double) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
insertEntry(LearningEvaluation) - Method in class moa.evaluation.LearningCurve
 
insertSorted(double, Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Inserts an instance neighbor into the list, maintaining the list sorted by distance.
insertTuple(GreenwaldKhannaQuantileSummary.Tuple, int) - Method in class moa.core.GreenwaldKhannaQuantileSummary
 
insertValue(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
insertValue(double, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
insertValue(double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
Insert a new value into the tree, updating both the sum of values and sum of squared values arrays
insertValue(double, double, double) - Method in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
Insert a new value into the tree, updating both the sum of values and sum of squared values arrays
inst - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
inst - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
inst - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
inst - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
inst - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
instance - Variable in class moa.classifiers.rules.RuleClassifier
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
instanceChildIndex(Instance) - Method in class moa.classifiers.trees.ORTO.SplitNode
 
InstanceConditionalBinaryTest - Class in moa.classifiers.core.conditionaltests
Abstract binary conditional test for instances to use to split nodes in Hoeffding trees.
InstanceConditionalBinaryTest() - Constructor for class moa.classifiers.core.conditionaltests.InstanceConditionalBinaryTest
 
InstanceConditionalTest - Class in moa.classifiers.core.conditionaltests
Abstract conditional test for instances to use to split nodes in Hoeffding trees.
InstanceConditionalTest() - Constructor for class moa.classifiers.core.conditionaltests.InstanceConditionalTest
 
instanceLimitOption - Variable in class moa.tasks.EvaluateClustering
 
instanceLimitOption - Variable in class moa.tasks.EvaluateConceptDrift
 
instanceLimitOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the maximum number of instances to test/train on (-1 = no limit).
instanceLimitOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequential
 
instanceLimitOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
instanceRandom - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
instanceRandom - Variable in class moa.streams.generators.AgrawalGenerator
 
instanceRandom - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
instanceRandom - Variable in class moa.streams.generators.HyperplaneGenerator
 
instanceRandom - Variable in class moa.streams.generators.LEDGenerator
 
instanceRandom - Variable in class moa.streams.generators.RandomRBFGenerator
 
instanceRandom - Variable in class moa.streams.generators.RandomTreeGenerator
 
instanceRandom - Variable in class moa.streams.generators.SEAGenerator
 
instanceRandom - Variable in class moa.streams.generators.STAGGERGenerator
 
instanceRandom - Variable in class moa.streams.generators.WaveformGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
instanceRandomSeedOption - Variable in class moa.streams.generators.AgrawalGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.LEDGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.SEAGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.STAGGERGenerator
 
instanceRandomSeedOption - Variable in class moa.streams.generators.WaveformGenerator
 
instances - Variable in class moa.streams.ArffFileStream
 
instances - Variable in class moa.streams.clustering.FileStream
 
INSTANCES_BETWEEN_MONITOR_UPDATES - Static variable in class moa.tasks.MainTask
The number of instances between monitor updates.
instancesBuffer - Variable in class moa.classifiers.meta.WEKAClassifier
 
InstancesHeader - Class in moa.core
Class for storing the header or context of a data stream.
InstancesHeader(Instances) - Constructor for class moa.core.InstancesHeader
 
instancesSeen - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
instancesSeen - Variable in class moa.classifiers.rules.RuleClassification
 
instancesSeen - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
instancesSeen - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
instancesSeenTest - Variable in class moa.classifiers.rules.RuleClassification
 
InstanceStream - Interface in moa.streams
Interface representing a data stream of instances.
INT_ADD - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
INT_DIV - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
INT_MULT - Static variable in class moa.clusterers.clustree.util.SimpleBudget
 
integerAddition() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that an integer addition has been performed by the tree.
integerAddition(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of integer additions have been done.
integerAddition() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerAddition(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerDivision() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a integer division has been performed by the tree.
integerDivision(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of integer divisions have been performed.
integerDivision() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerDivision(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerMultiplication() - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget class that a integer multiplicaton has been performed by the tree.
integerMultiplication(int) - Method in interface moa.clusterers.clustree.util.Budget
Inform the Budget that a certain number of integer multiplications have been performed.
integerMultiplication() - Method in class moa.clusterers.clustree.util.SimpleBudget
 
integerMultiplication(int) - Method in class moa.clusterers.clustree.util.SimpleBudget
 
IntOption - Class in moa.options
Int option.
IntOption(String, char, String, int) - Constructor for class moa.options.IntOption
 
IntOption(String, char, String, int, int, int) - Constructor for class moa.options.IntOption
 
IntOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit an integer option.
IntOptionEditComponent(IntOption) - Constructor for class moa.gui.IntOptionEditComponent
 
intToCLIString(int) - Static method in class moa.options.IntOption
 
invalidate() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
invalidates all initializations.
inverseError(double) - Static method in class moa.clusterers.clustream.ClustreamKernel
Approximates the inverse error function.
InverseErrorWeightedVote - Class in moa.classifiers.rules.core.voting
InverseErrorWeightedVote class for weighted votes based on estimates of errors.
InverseErrorWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.InverseErrorWeightedVote
 
invertSelectionTipText() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns the tip text for this property.
isALeaf() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Checks if node is a leaf.
isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.Rule
 
isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
isAnomaly(Instance, double, double, int) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
ISB - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
ISB - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
ISB - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
ISB_PD - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
ISBIndex - Class in moa.clusterers.outliers.AbstractC
 
ISBIndex(double, double) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex
 
ISBIndex - Class in moa.clusterers.outliers.Angiulli
 
ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex
 
ISBIndex - Class in moa.clusterers.outliers.MCOD
 
ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex
 
ISBIndex - Class in moa.clusterers.outliers.SimpleCOD
 
ISBIndex(double, int) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.AbstractC
 
ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.Angiulli
 
ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.MCOD
 
ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
ISBIndex.ISBNode - Class in moa.clusterers.outliers.SimpleCOD
 
ISBIndex.ISBNode(Instance, StreamObj, Long) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
ISBIndex.ISBNode.NodeType - Enum in moa.clusterers.outliers.MCOD
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.AbstractC
 
ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.Angiulli
 
ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.MCOD
 
ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
 
ISBIndex.ISBSearchResult - Class in moa.clusterers.outliers.SimpleCOD
 
ISBIndex.ISBSearchResult(ISBIndex.ISBNode, double) - Constructor for class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
 
isBufferStoring - Variable in class moa.classifiers.meta.WEKAClassifier
 
isCancelled() - Method in class moa.tasks.NullMonitor
 
isCancelled() - Method in class moa.tasks.StandardTaskMonitor
 
isCancelled() - Method in interface moa.tasks.TaskMonitor
Gets whether the task monitored is cancelled.
isCellEditable(int, int) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.LineGraphViewPanel.PlotTableModel
 
isCellEditable(int, int) - Method in class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
isCellEditable(int, int) - Method in class moa.gui.TaskManagerPanel.TaskTableModel
 
isChangeDetected - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Change was detected
isClassificationEnabled - Variable in class moa.classifiers.meta.WEKAClassifier
 
isClustered() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
isComplete - Variable in class moa.tasks.StandardTaskMonitor
 
isComplete() - Method in class moa.tasks.TaskThread
 
isCovering(Instance) - Method in class moa.classifiers.rules.core.Rule
 
isEmpty() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Gets whether the list is empty.
isEmpty() - Method in class moa.clusterers.clustream.ClustreamKernel
Check if this cluster is empty or not.
isEmpty() - Method in class moa.clusterers.clustree.ClusKernel
Check if this cluster is empty or not.
isEmpty() - Method in class moa.clusterers.clustree.Entry
Check if this Entry is empty or not.
isEnabled(int) - Method in class moa.evaluation.MeasureCollection
 
isEnabledDrawClustering() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawGroundTruth() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawMicroclustering() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawOutliers() - Method in class moa.gui.outliertab.OutlierVisualTab
 
isEnabledDrawPoints() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
isEnabledDrawPoints() - Method in class moa.gui.outliertab.OutlierVisualTab
 
isEqual(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
isGroundTruth() - Method in class moa.cluster.Cluster
 
isIncludedInRuleNode(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
isInitialized - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
The change detector has been initialized with the option values
isInitialized - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
isInitialized - Variable in class moa.streams.filters.CacheFilter
 
isIrrelevant(double) - Method in class moa.clusterers.clustree.Entry
Returns true if this entry is irrelevant with respecto the given threshold.
isJavaVersionOK() - Static method in class moa.DoTask
Checks if the Java version is recent enough to run MOA.
isLeaf() - Method in class moa.classifiers.trees.FIMTDD.Node
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
isLeaf() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
isLeaf() - Method in class moa.classifiers.trees.ORTO.Node
 
isLeaf() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
isLeaf() - Method in class moa.classifiers.trees.ORTO.SplitNode
 
isLeaf() - Method in class moa.clusterers.clustree.Node
Checks if this node is a leaf.
isMissingValue(double) - Static method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Tests if the given value codes "missing".
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.Angiulli.STORMBase
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
IsNodeIdInWin(long) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
isNoise() - Method in class moa.gui.visualization.DataPoint
 
isNullError() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
isNullError() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
isNullError() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
isOutiler() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
 
isOutlier(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
isOutputFile - Variable in class moa.options.FileOption
 
isOutputFile() - Method in class moa.options.FileOption
 
isPaintable() - Method in class weka.gui.MOAClassOptionEditor
Returns true since this editor is paintable.
isPaused() - Method in class moa.tasks.NullMonitor
 
isPaused() - Method in class moa.tasks.StandardTaskMonitor
 
isPaused() - Method in interface moa.tasks.TaskMonitor
Gets whether the task monitored is paused.
isPresent() - Static method in class moa.core.SizeOf
Checks whteher the agent is present.
isPublicConcreteClassOfType(String, Class<?>) - Static method in class moa.core.AutoClassDiscovery
 
isRandomizable() - Method in class moa.classifiers.active.ActiveClassifier
 
isRandomizable() - Method in class moa.classifiers.bayes.NaiveBayes
 
isRandomizable() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
isRandomizable() - Method in interface moa.classifiers.Classifier
Gets whether this classifier needs a random seed.
isRandomizable() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
isRandomizable() - Method in class moa.classifiers.functions.MajorityClass
 
isRandomizable() - Method in class moa.classifiers.functions.NoChange
 
isRandomizable() - Method in class moa.classifiers.functions.Perceptron
 
isRandomizable() - Method in class moa.classifiers.functions.SGD
 
isRandomizable() - Method in class moa.classifiers.functions.SGDMultiClass
 
isRandomizable() - Method in class moa.classifiers.functions.SPegasos
 
isRandomizable() - Method in class moa.classifiers.lazy.kNN
 
isRandomizable() - Method in class moa.classifiers.lazy.kNNwithPAW
 
isRandomizable() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
isRandomizable() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Determines whether the classifier is randomizable.
isRandomizable() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Determines whether the classifier is randomizable.
isRandomizable() - Method in class moa.classifiers.meta.DACC
 
isRandomizable() - Method in class moa.classifiers.meta.LeveragingBag
 
isRandomizable() - Method in class moa.classifiers.meta.LimAttClassifier
 
isRandomizable() - Method in class moa.classifiers.meta.OCBoost
 
isRandomizable() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines whether the classifier is randomizable.
isRandomizable() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBag
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBagAdwin
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBoost
 
isRandomizable() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
isRandomizable() - Method in class moa.classifiers.meta.RandomRules
 
isRandomizable() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
isRandomizable() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
isRandomizable() - Method in class moa.classifiers.meta.WEKAClassifier
 
isRandomizable() - Method in class moa.classifiers.multilabel.MajorityLabelset
 
isRandomizable() - Method in class moa.classifiers.multilabel.meta.MLOzaBag
 
isRandomizable() - Method in class moa.classifiers.rules.AbstractAMRules
description of the Methods used.
isRandomizable() - Method in class moa.classifiers.rules.AMRulesRegressor
 
isRandomizable() - Method in class moa.classifiers.rules.functions.Perceptron
 
isRandomizable() - Method in class moa.classifiers.rules.functions.TargetMean
 
isRandomizable() - Method in class moa.classifiers.rules.RuleClassifier
 
isRandomizable() - Method in class moa.classifiers.trees.DecisionStump
 
isRandomizable() - Method in class moa.classifiers.trees.FIMTDD
 
isRandomizable() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
isRandomizable() - Method in class moa.classifiers.trees.HoeffdingTree
 
isRandomizable() - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
isRandomizable() - Method in class moa.classifiers.trees.ORTO
 
isRandomizable() - Method in class moa.classifiers.trees.RandomHoeffdingTree
 
isRandomizable() - Method in interface moa.clusterers.Clusterer
 
isRandomizable() - Method in class moa.clusterers.ClusterGenerator
 
isRandomizable() - Method in class moa.clusterers.clustream.Clustream
 
isRandomizable() - Method in class moa.clusterers.clustream.WithKmeans
 
isRandomizable() - Method in class moa.clusterers.clustree.ClusTree
 
isRandomizable() - Method in class moa.clusterers.CobWeb
 
isRandomizable() - Method in class moa.clusterers.denstream.WithDBSCAN
 
isRandomizable() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
isRandomizable() - Method in class moa.clusterers.streamkm.StreamKM
 
isRandomizable() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
isRandomizable() - Method in class moa.learners.ChangeDetectorLearner
 
isRegression - Variable in class moa.classifiers.meta.RandomRules
 
isRestartable() - Method in class moa.streams.ArffFileStream
 
isRestartable() - Method in class moa.streams.CachedInstancesStream
 
isRestartable() - Method in class moa.streams.clustering.FileStream
 
isRestartable() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
isRestartable() - Method in class moa.streams.ConceptDriftRealStream
 
isRestartable() - Method in class moa.streams.ConceptDriftStream
 
isRestartable() - Method in class moa.streams.FilteredStream
 
isRestartable() - Method in class moa.streams.filters.AbstractStreamFilter
 
isRestartable() - Method in class moa.streams.generators.AgrawalGenerator
 
isRestartable() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
isRestartable() - Method in class moa.streams.generators.HyperplaneGenerator
 
isRestartable() - Method in class moa.streams.generators.LEDGenerator
 
isRestartable() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
isRestartable() - Method in class moa.streams.generators.RandomRBFGenerator
 
isRestartable() - Method in class moa.streams.generators.RandomTreeGenerator
 
isRestartable() - Method in class moa.streams.generators.SEAGenerator
 
isRestartable() - Method in class moa.streams.generators.STAGGERGenerator
 
isRestartable() - Method in class moa.streams.generators.WaveformGenerator
 
isRestartable() - Method in interface moa.streams.InstanceStream
Gets whether this stream can restart.
isRestartable() - Method in class moa.streams.MultiFilteredStream
 
isSet - Variable in class moa.options.FlagOption
 
isSet() - Method in class moa.options.FlagOption
 
isUsingSameAttribute(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
isValidCluster() - Method in class moa.gui.visualization.ClusterPanel
 
isValidCluster() - Method in class moa.gui.visualization.OutlierPanel
 
isVisited() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
isWarningZone - Variable in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Warning Zone: after a warning and before a change
isWarningZone - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
isWekaVersionOK() - Static method in class moa.DoTask
Checks if the Weka version is recent enough to run MOA.
itemExists(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
itemExists(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
itemFeature - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
itemID - Variable in class moa.recommender.rc.utils.Rating
 
itemsStats - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
iterationControl - Variable in class moa.classifiers.active.ActiveClassifier
 
iterationsOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
iterator() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
An iterator for the set.
iterator() - Method in class moa.clusterers.outliers.utils.mtree.MTree.Query
 
iterator() - Method in class moa.recommender.rc.utils.DenseVector
 
iterator() - Method in class moa.recommender.rc.utils.SparseVector
 
iterator() - Method in class moa.recommender.rc.utils.Vector
 

J

JesterDataset - Class in moa.recommender.dataset.impl
 
JesterDataset() - Constructor for class moa.recommender.dataset.impl.JesterDataset
 
joinClustersOption - Variable in class moa.clusterers.ClusterGenerator
 

K

KDTree - Class in moa.classifiers.lazy.neighboursearch
Class implementing the KDTree search algorithm for nearest neighbour search.
The connection to dataset is only a reference.
KDTree() - Constructor for class moa.classifiers.lazy.neighboursearch.KDTree
Creates a new instance of KDTree.
KDTree(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.KDTree
Creates a new instance of KDTree.
KDTreeNode - Class in moa.classifiers.lazy.neighboursearch.kdtrees
A class representing a KDTree node.
KDTreeNode() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Constructor.
KDTreeNode(int, int, int, double[][]) - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Constructor.
KDTreeNode(int, int, int, double[][], double[][]) - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
 
KDTreeNodeSplitter - Class in moa.classifiers.lazy.neighboursearch.kdtrees
Class that splits up a KDTreeNode.
KDTreeNodeSplitter() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
default constructor.
KDTreeNodeSplitter(int[], Instances, EuclideanDistance) - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Creates a new instance of KDTreeNodeSplitter.
keepClassLabel() - Method in class moa.clusterers.AbstractClusterer
 
keepClassLabel() - Method in interface moa.clusterers.Clusterer
 
keepClassLabel() - Method in class moa.clusterers.ClusterGenerator
 
keepClassLabel() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
keepClassLabel() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
keepNonNumericalAttrOption - Variable in class moa.streams.clustering.FileStream
 
kernelRadiFactorOption - Variable in class moa.clusterers.clustream.Clustream
 
kernelRadiFactorOption - Variable in class moa.clusterers.clustream.WithKmeans
 
kernelRadiiOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
kernelRadiiRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
killTreeChilds(HoeffdingAdaptiveTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
killTreeChilds(HoeffdingAdaptiveTree) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
killTreeChilds(HoeffdingAdaptiveTree) - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
Km1 - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
kMeans(int, List<? extends Cluster>) - Static method in class moa.clusterers.clustream.Clustream
 
kMeans(int, Cluster[], List<? extends Cluster>) - Static method in class moa.clusterers.clustream.Clustream
 
kMeans(int, Cluster[], List<? extends Cluster>) - Static method in class moa.clusterers.clustream.WithKmeans
(The Actual Algorithm) k-means of (micro)clusters, with specified initialization points.
KMeans - Class in moa.clusterers
A kMeans implementation for microclusterings.
KMeans() - Constructor for class moa.clusterers.KMeans
 
kMeans(Cluster[], List<? extends Cluster>) - Static method in class moa.clusterers.KMeans
This kMeans implementation clusters a big number of microclusters into a smaller amount of macro clusters.
kMeans_gta(int, Clustering, Clustering) - Static method in class moa.clusterers.clustream.WithKmeans
k-means of (micro)clusters, with ground-truth-aided initialization.
kMeans_rand(int, Clustering) - Static method in class moa.clusterers.clustream.WithKmeans
k-means of (micro)clusters, with randomized initialization.
KMeansInpiredMethod - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a node into two such that the overall sum of squared distances of points to their centres on both sides of the (axis-parallel) splitting plane is minimum.

For more information see also:

Ashraf Masood Kibriya (2007).
KMeansInpiredMethod() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
 
kNearestNeighbours(Instance, int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the k nearest neighbours of the supplied instance.
kNearestNeighbours(Instance, int) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns k nearest instances in the current neighbourhood to the supplied instance.
kNearestNeighbours(Instance, int) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns k nearest instances in the current neighbourhood to the supplied instance.
kNN - Class in moa.classifiers.lazy
k Nearest Neighbor.
kNN() - Constructor for class moa.classifiers.lazy.kNN
 
knnInCluster - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
knn distnace within own cluster
knnIndices - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
knn indices (for debugging only)
kNNwithPAW - Class in moa.classifiers.lazy
k Nearest Neighbor ADAPTIVE with PAW.
kNNwithPAW() - Constructor for class moa.classifiers.lazy.kNNwithPAW
 
kNNwithPAWandADWIN - Class in moa.classifiers.lazy
k Nearest Neighbor ADAPTIVE with ADWIN+PAW.
kNNwithPAWandADWIN() - Constructor for class moa.classifiers.lazy.kNNwithPAWandADWIN
 
kOption - Variable in class moa.classifiers.lazy.kNN
 
kOption - Variable in class moa.clusterers.clustream.WithKmeans
 
kOption - Variable in class moa.clusterers.outliers.AbstractC.AbstractC
 
kOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
kOption - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
kOption - Variable in class moa.clusterers.outliers.MCOD.MCOD
 
kOption - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 

L

labelCardinalityOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
labelCardinalityRatioOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
labelCardinalityVarOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
labelDelayOption - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
labelDependencyChangeRatioOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
lambda - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.EWMAChartDM
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
lambdaOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
lambdaOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
lambdaRegularizationOption - Variable in class moa.classifiers.functions.SGD
 
lambdaRegularizationOption - Variable in class moa.classifiers.functions.SGDMultiClass
 
lambdaRegularizationOption - Variable in class moa.classifiers.functions.SPegasos
 
laplaceCorrectionOption - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
 
lastInstanceRead - Variable in class moa.streams.ArffFileStream
 
lastInstanceRead - Variable in class moa.streams.clustering.FileStream
 
lastNominalValues - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
lastSeenClass - Variable in class moa.classifiers.functions.NoChange
 
lastSeenClass - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
lastTargetMean - Variable in class moa.classifiers.rules.core.Rule.Builder
 
lastTargetMean - Variable in class moa.classifiers.rules.nodes.RuleSplitNode
 
lastValueOption - Variable in class moa.tasks.RunStreamTasks
 
lastValueOption - Variable in class moa.tasks.RunTasks
 
latestPreviewChanged() - Method in class moa.gui.PreviewPanel
 
latestPreviewChanged() - Method in interface moa.tasks.ResultPreviewListener
This method is used to receive a signal from TaskMonitor that the lastest preview has changed.
latestPreviewGrabTime - Variable in class moa.tasks.TaskThread
 
latestResultPreview - Variable in class moa.tasks.StandardTaskMonitor
 
leafFractionOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
leafpredictionOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
leafpredictionOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
learnerListOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
learnerOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Type of classifier to use as a component classifier.
learnerOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Type of classifier to use as a component classifier.
learnerOption - Variable in class moa.classifiers.meta.DACC
Base classifier
learnerOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Type of classifier to use as a component classifier.
learnerOption - Variable in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
 
learnerOption - Variable in class moa.tasks.EvaluateClustering
 
learnerOption - Variable in class moa.tasks.EvaluateConceptDrift
 
learnerOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to select the trained classifier.
learnerOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
learnerOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
learnerOption - Variable in class moa.tasks.EvaluatePrequential
 
learnerOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
learnerOption - Variable in class moa.tasks.LearnModel
 
learnerOption - Variable in class moa.tasks.LearnModelRegression
 
learners - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Ensemble classifiers.
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves.LearningNodeClassifier
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelInactiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
learnFromInstance(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
learnFromInstance(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
learnFromInstance(Instance, FIMTDD, boolean) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
Method to learn from an instance that passes the new instance to the perceptron learner, and also prevents the class value from being truncated to an int when it is passed to the attribute observer
learnFromInstance(Instance, HoeffdingAdaptiveTree, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
learnFromInstance(Instance, HoeffdingAdaptiveTree, HoeffdingTree.SplitNode, int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
learnFromInstance(Instance, HoeffdingAdaptiveTree, HoeffdingTree.SplitNode, int) - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.InactiveLearningNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNode
 
learnFromInstance(Instance, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.InactiveLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
learnFromInstance(Instance, HoeffdingTree) - Method in class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
LearningCurve - Class in moa.evaluation
Class that stores and keeps the history of evaluation measurements.
LearningCurve(String) - Constructor for class moa.evaluation.LearningCurve
 
LearningEvaluation - Class in moa.evaluation
Class that stores an array of evaluation measurements.
LearningEvaluation(Measurement[]) - Constructor for class moa.evaluation.LearningEvaluation
 
LearningEvaluation(Measurement[], ClassificationPerformanceEvaluator, Classifier) - Constructor for class moa.evaluation.LearningEvaluation
 
LearningEvaluation(ClassificationPerformanceEvaluator, Classifier) - Constructor for class moa.evaluation.LearningEvaluation
 
LearningEvaluation(Measurement[], LearningPerformanceEvaluator, Clusterer) - Constructor for class moa.evaluation.LearningEvaluation
 
learningModel - Variable in class moa.classifiers.trees.FIMTDD.LeafNode
 
learningModel - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
learningNode - Variable in class moa.classifiers.rules.core.Rule
 
LearningPerformanceEvaluator - Interface in moa.evaluation
Interface implemented by learner evaluators to monitor the results of the learning process.
learningRateDecay - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRateDecayFactorOption - Variable in class moa.classifiers.trees.FIMTDD
 
learningRateDecayOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRateOption - Variable in class moa.classifiers.functions.SGD
 
learningRateOption - Variable in class moa.classifiers.functions.SGDMultiClass
 
learningRatio - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRatioConstOption - Variable in class moa.classifiers.trees.FIMTDD
 
LearningRatioDecayOrConstOption - Variable in class moa.classifiers.trees.ORTO
 
learningRatioOption - Variable in class moa.classifiers.functions.Perceptron
 
learningRatioOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
learningRatioOption - Variable in class moa.classifiers.rules.AMRulesRegressor
 
learningRatioOption - Variable in class moa.classifiers.rules.core.Rule.Builder
 
learningRatioOption - Variable in class moa.classifiers.rules.functions.Perceptron
 
learningRatioOption - Variable in class moa.classifiers.trees.FIMTDD
 
LearningRatioOption - Variable in class moa.classifiers.trees.ORTO
 
LearnModel - Class in moa.tasks
Task for learning a model without any evaluation.
LearnModel() - Constructor for class moa.tasks.LearnModel
 
LearnModel(Classifier, InstanceStream, int, int) - Constructor for class moa.tasks.LearnModel
 
LearnModelRegression - Class in moa.tasks
Task for learning a model without any evaluation.
LearnModelRegression() - Constructor for class moa.tasks.LearnModelRegression
 
LearnModelRegression(Classifier, InstanceStream, int, int) - Constructor for class moa.tasks.LearnModelRegression
 
learnObject(double[]) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
learnRateDecay - Variable in class moa.classifiers.trees.ORTO
 
LEDGenerator - Class in moa.streams.generators
Stream generator for the problem of predicting the digit displayed on a 7-segment LED display.
LEDGenerator() - Constructor for class moa.streams.generators.LEDGenerator
 
LEDGeneratorDrift - Class in moa.streams.generators
Stream generator for the problem of predicting the digit displayed on a 7-segment LED display with drift.
LEDGeneratorDrift() - Constructor for class moa.streams.generators.LEDGeneratorDrift
 
left - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
left - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
left - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
leftStatistics - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
legendLocationOption - Variable in class moa.tasks.Plot
Legend (key) location on the plot.
legendTypeOption - Variable in class moa.tasks.Plot
Legend elements' alignment.
length - Variable in class moa.clusterers.streamkm.StreamKM
 
length() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
lenWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
lenWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
lessThan - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
leveraginBagAlgorithmOption - Variable in class moa.classifiers.meta.LeveragingBag
 
LeveragingBag - Class in moa.classifiers.meta
Leveraging Bagging for evolving data streams using ADWIN.
LeveragingBag() - Constructor for class moa.classifiers.meta.LeveragingBag
 
LimAttClassifier - Class in moa.classifiers.meta
Ensemble Combining Restricted Hoeffding Trees using Stacking.
LimAttClassifier() - Constructor for class moa.classifiers.meta.LimAttClassifier
 
LimAttClassifier.CombinationGenerator - Class in moa.classifiers.meta
 
LimAttClassifier.CombinationGenerator(int, int) - Constructor for class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
LimAttHoeffdingTree - Class in moa.classifiers.trees
Hoeffding decision trees with a restricted number of attributes for data streams.
LimAttHoeffdingTree() - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree
 
LimAttHoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
 
LimAttHoeffdingTree.LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNB
 
LimAttHoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
LimAttHoeffdingTree.LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
LimAttHoeffdingTree.LimAttLearningNode - Class in moa.classifiers.trees
 
LimAttHoeffdingTree.LimAttLearningNode(double[]) - Constructor for class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
limitOption - Variable in class moa.classifiers.lazy.kNN
 
LinearNNSearch - Class in moa.classifiers.lazy.neighboursearch
Class implementing the brute force search algorithm for nearest neighbour search.
LinearNNSearch() - Constructor for class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Constructor.
LinearNNSearch(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Constructor that uses the supplied set of instances.
linearOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines whether additional information should be sent to the output.
LineGraphViewPanel - Class in moa.gui
This panel displays an evaluation learning curve.
LineGraphViewPanel() - Constructor for class moa.gui.LineGraphViewPanel
 
LineGraphViewPanel.PlotLine - Class in moa.gui
 
LineGraphViewPanel.PlotLine() - Constructor for class moa.gui.LineGraphViewPanel.PlotLine
 
LineGraphViewPanel.PlotPanel - Class in moa.gui
 
LineGraphViewPanel.PlotPanel() - Constructor for class moa.gui.LineGraphViewPanel.PlotPanel
 
LineGraphViewPanel.PlotTableModel - Class in moa.gui
 
LineGraphViewPanel.PlotTableModel() - Constructor for class moa.gui.LineGraphViewPanel.PlotTableModel
 
lineWidthOption - Variable in class moa.tasks.Plot
Plotted line width.
listAttributes - Variable in class moa.classifiers.meta.RandomRules
 
listAttributes - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
listAttributes - Variable in class moa.classifiers.trees.LimAttHoeffdingTree
 
listAttributes - Variable in class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
ListOption - Class in moa.options
List option.
ListOption(String, char, String, Option, Option[], char) - Constructor for class moa.options.ListOption
 
listOptions() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Returns an enumeration describing the available options.
listOptions() - Method in class weka.classifiers.meta.MOA
Returns an enumeration describing the available options.
listOptions() - Method in class weka.datagenerators.classifiers.classification.MOA
Returns an enumeration describing the available options.
lloydPlusPlus(int, int, int, Point[], Point[]) - Method in class moa.clusterers.streamkm.StreamKM
 
logKm1 - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
LOGLOSS - Static variable in class moa.classifiers.functions.SGD
 
LOGLOSS - Static variable in class moa.classifiers.functions.SGDMultiClass
 
LOGLOSS - Static variable in class moa.classifiers.functions.SPegasos
 
lossExamplesSeen - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
lossFadedSumAlternate - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
lossFadedSumOriginal - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
lossFunctionOption - Variable in class moa.classifiers.functions.SGD
 
lossFunctionOption - Variable in class moa.classifiers.functions.SGDMultiClass
 
lossFunctionOption - Variable in class moa.classifiers.functions.SPegasos
 
lossNumQiTests - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
lossStatistics - Variable in class moa.classifiers.trees.ORTO.InnerNode
 
lossSumQi - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
lowerBound - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
lRate - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
lRateOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
LS - Variable in class moa.cluster.CFCluster
Linear sum of all the points added to the cluster.
LST - Variable in class moa.clusterers.clustream.ClustreamKernel
 
lt_cnt - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 

M

m_A - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_ActiveIndices - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
The boolean flags, whether an attribute will be used or not.
m_ActualClassifier - Variable in class weka.classifiers.meta.MOA
the actual moa classifier to use for learning.
m_ActualGenerator - Variable in class weka.datagenerators.classifiers.classification.MOA
the actual data generator.
m_acuity - Variable in class moa.clusterers.CobWeb
Acuity (minimum standard deviation).
m_bias - Variable in class moa.classifiers.functions.SGD
 
m_bias - Variable in class moa.classifiers.functions.SGDMultiClass
 
m_BinaryGenerator - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_Classifier - Variable in class weka.classifiers.meta.MOA
the moa classifier option (this object is used in the GenericObjectEditor).
m_classTotals - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
sum of weight_of_instance * word_count_of_instance for each class
m_cobwebTree - Variable in class moa.clusterers.CobWeb
Holds the root of the Cobweb tree.
m_CustomEditor - Variable in class weka.gui.MOAClassOptionEditor
the custom editor.
m_cutoff - Variable in class moa.clusterers.CobWeb
Cutoff (minimum category utility).
m_Data - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
the instances used internally.
m_Distance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
The distance from the current instance to this neighbor.
m_DistanceFunction - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
the distance function used.
m_DistanceList - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Array holding the distances of the nearest neighbours.
m_Distances - Variable in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Array holding the distances of the nearest neighbours.
m_DontNormalize - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
True if normalization is turned off (default false).
m_EditComponent - Variable in class weka.gui.MOAClassOptionEditor
the component for editing.
m_End - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
The end index of the portion of the master index array, which stores indices of the instances/points the node contains.
m_EuclideanDistance - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
The euclidean distance function to use.
m_EuclideanDistance - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
The distance function used for building the tree.
m_First - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
The first node in the list.
m_Fraction - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_Generator - Variable in class weka.datagenerators.classifiers.classification.MOA
for manipulating the generator through the GUI.
m_headerInfo - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
copy of header information for use in toString method
m_Instance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
The neighbor instance.
m_Instances - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
The instances that'll be used for tree construction.
m_Instances - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
The neighbourhood of instances to find neighbours in.
m_InstancesTemplate - Variable in class moa.core.utils.Converter
 
m_InstList - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Indexlist of the instances of this kdtree.
m_InstList - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
The master index array that'll be reshuffled as nodes are split and the tree is constructed.
m_k - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_k - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_k - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_kNN - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
The number of neighbours to find.
m_L - Variable in class moa.classifiers.multilabel.MEKAClassifier
 
m_L - Variable in class moa.classifiers.multilabel.meta.MLOzaBag
 
m_L - Variable in class moa.classifiers.multilabel.meta.MLOzaBagAdwin
 
m_L - Variable in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
m_L - Variable in class moa.core.utils.Converter
 
m_L - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_lambda - Variable in class moa.classifiers.functions.SGD
The regularization parameter
m_lambda - Variable in class moa.classifiers.functions.SGDMultiClass
The regularization parameter
m_lambda - Variable in class moa.classifiers.functions.SPegasos
The regularization parameter
m_Last - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
The last node in the list.
m_learningRate - Variable in class moa.classifiers.functions.SGD
The learning rate
m_learningRate - Variable in class moa.classifiers.functions.SGDMultiClass
The learning rate
m_Left - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
left subtree; contains instances with smaller or equal to split value.
m_Length - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
The number of nodes to attempt to maintain in the list.
m_loss - Variable in class moa.classifiers.functions.SGD
The current loss function to minimize
m_loss - Variable in class moa.classifiers.functions.SGDMultiClass
The current loss function to minimize
m_loss - Variable in class moa.classifiers.functions.SPegasos
The current loss function to minimize
m_MaxDepth - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Tree stats.
m_MaxInstInLeaf - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
maximal number of instances in a leaf.
m_MeasurePerformance - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Should we measure Performance.
m_MetaRandom - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_MinBoxRelWidth - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
minimal relative width of a KDTree rectangle.
m_MultilabelInstancesHeader - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_nBothInlierOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_Next - Variable in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
A link to the next neighbor instance.
m_NodeNumber - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
node number (only for debug).
m_NodeRanges - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
lowest and highest value and width (= high - low) for each dimension.
m_NodesRectBounds - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
The lo and high bounds of the hyper rectangle described by the node.
m_nOnlyInlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_nOnlyInlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_nOnlyInlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_nOnlyInlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_nOnlyOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_normal - Static variable in class moa.clusterers.CobWeb
Normal constant.
m_NormalizeNodeWidth - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Stores whether if the width of a KDTree node is normalized or not.
m_numberMerges - Variable in class moa.clusterers.CobWeb
the number of merges that happened
m_numberOfClusters - Variable in class moa.clusterers.CobWeb
Number of clusters (nodes in the tree).
m_numberOfClustersDetermined - Variable in class moa.clusterers.CobWeb
whether the number of clusters was already determined
m_numberSplits - Variable in class moa.clusterers.CobWeb
the number of splits that happened
m_numClasses - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
number of class values
m_numInstances - Variable in class moa.classifiers.functions.SGD
The number of training instances
m_numInstances - Variable in class moa.classifiers.functions.SGDMultiClass
The number of training instances
m_NumLeaves - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Tree stats.
m_NumNodes - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
Tree stats.
m_outlier - Variable in class moa.gui.visualization.RunOutlierVisualizer
 
m_Present - Static variable in class moa.core.SizeOf
whether the agent is present.
m_probOfClass - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
the probability of a class (i.e.
m_QueryFreq - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_radius - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_radius - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_radius - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_radius - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_Ranges - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
The range of the attributes.
m_Right - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
right subtree; contains instances with larger than split value.
m_Root - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
The root node of the tree.
m_saveInstances - Variable in class moa.clusterers.CobWeb
Output instances in graph representation of Cobweb tree (Allows instances at nodes in the tree to be visualized in the Explorer).
m_SkipIdentical - Variable in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Whether to skip instances from the neighbours that are identical to the query instance.
m_SplitDim - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
attribute to split on.
m_Splitter - Variable in class moa.classifiers.lazy.neighboursearch.KDTree
The node splitter.
m_SplitValue - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
value to split on.
m_Start - Variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
The start index of the portion of the master index array, which stores the indices of the instances/points the node contains.
m_t - Variable in class moa.classifiers.functions.SGD
Holds the current iteration number
m_t - Variable in class moa.classifiers.functions.SGDMultiClass
Holds the current iteration number
m_t - Variable in class moa.classifiers.functions.SPegasos
Holds the current iteration number
m_theta - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_TopCombinations - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
m_Validated - Variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Whether all the necessary preparations have been done.
m_weights - Variable in class moa.classifiers.functions.SGD
Stores the weights (+ bias in the last element)
m_weights - Variable in class moa.classifiers.functions.SGDMultiClass
Stores the weights (+ bias in the last element)
m_weights - Variable in class moa.classifiers.functions.SPegasos
Stores the weights (+ bias in the last element)
m_WindowSize - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
m_WindowSize - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
m_WindowSize - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
m_WindowSize - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
m_wordTotalForClass - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
probability that a word (w) exists in a class (H) (i.e.
magChangeOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
main(String[]) - Static method in class moa.clusterers.outliers.AbstractC.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.Angiulli.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.MCOD.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.SimpleCOD.Test
 
main(String[]) - Static method in class moa.clusterers.outliers.TestSpeed
 
main(String[]) - Static method in class moa.DoTask
Main method for running tasks from the command line.
main(String[]) - Static method in class moa.gui.BatchCmd
 
main(String[]) - Static method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
main(String[]) - Static method in class moa.gui.GUI
 
main(String[]) - Static method in class moa.gui.GUIDefaults
only for testing - prints the content of the props file.
main(String[]) - Static method in class moa.gui.OptionsConfigurationPanel
 
main(String[]) - Static method in class moa.gui.RegressionTaskManagerPanel
 
main(String[]) - Static method in class moa.gui.TaskLauncher
 
main(String[]) - Static method in class moa.gui.TaskManagerPanel
 
main(String[]) - Static method in class moa.MakeObject
Main method for writing an object to a file from the command line.
main(String[]) - Static method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
main(String[]) - Static method in class weka.classifiers.meta.MOA
Main method for testing this class.
main(String[]) - Static method in class weka.datagenerators.classifiers.classification.MOA
Main method for executing this class.
mainFindBestValEntropy(BinaryTreeNumericAttributeClassObserver.Node) - Method in class moa.classifiers.rules.RuleClassifier
 
MainTask - Class in moa.tasks
Abstract Main Task.
MainTask() - Constructor for class moa.tasks.MainTask
 
MajorityClass - Class in moa.classifiers.functions
Majority class learner.
MajorityClass() - Constructor for class moa.classifiers.functions.MajorityClass
 
MajorityLabelset - Class in moa.classifiers.multilabel
Majority Labelset classifier.
MajorityLabelset() - Constructor for class moa.classifiers.multilabel.MajorityLabelset
 
MakeObject - Class in moa
Class for writing a MOA object to a file from the command line.
MakeObject() - Constructor for class moa.MakeObject
 
makeOlder(long, double) - Method in class moa.clusterers.clustree.ClusKernel
Make this cluster older.
makeOlder(long, double) - Method in class moa.clusterers.clustree.Entry
Ages this entrie's data AND buffer according to the given time and aging constant.
makeOlder(long, double) - Method in class moa.clusterers.clustree.Node
 
manageMemory(int, int) - Method in class moa.classifiers.bayes.NaiveBayes
 
manageMemory(int, int) - Method in class moa.classifiers.rules.RuleClassifier
 
manager - Variable in class moa.clusterers.streamkm.StreamKM
 
manipulateIds() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
resets the ids, so that the set contains ids from 0 to noOfObjects-1
marker - Variable in class moa.classifiers.lazy.kNNwithPAW
 
marker - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
materializeObject(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractClassOption
Gets a materialized object of this option.
matrixCodes - Variable in class moa.classifiers.meta.LeveragingBag
 
matrixCodes - Variable in class moa.classifiers.meta.LimAttClassifier
 
matrixCodes - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
maturityOption - Variable in class moa.classifiers.meta.DACC
Maturity age of classifiers
MAX - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
The index of MAX value in attributes' range array.
MAX - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Index of max value in an array of attributes' range.
MAX_PANEL_HEIGHT - Static variable in class moa.gui.OptionsConfigurationPanel
 
MAX_STATUS_STRING_LENGTH - Static variable in class moa.DoTask
Maximum length of the status string that shows the progress of tasks running.
maxBranches() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalBinaryTest
 
maxBranches() - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Gets the number of maximum branches, -1 if unknown.
maxBranches() - Method in class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
MAXBUCKETS - Static variable in class moa.classifiers.core.driftdetection.ADWIN
 
maxBucketsize - Variable in class moa.clusterers.streamkm.BucketManager
 
maxByteSizeOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Determines the maximum size of model (evaluated after every chunk).
maxByteSizeOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines the maximum size of model (evaluated after every chunk).
maxByteSizeOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
maxByteSizeOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
maxDepth - Variable in class moa.classifiers.trees.ORTO
 
maxHeight - Variable in class moa.clusterers.clustree.ClusTree
The maximal height of the tree.
maxHeightOption - Variable in class moa.clusterers.clustree.ClusTree
 
maxID - Variable in class moa.classifiers.trees.FIMTDD
 
maxID - Variable in class moa.classifiers.trees.ORTO
 
maximumCacheSizeOption - Variable in class moa.tasks.CacheShuffledStream
 
maxIndex() - Method in class moa.core.DoubleVector
 
maxInstancesOption - Variable in class moa.tasks.EvaluateModel
 
maxInstancesOption - Variable in class moa.tasks.EvaluateModelRegression
 
maxInstancesOption - Variable in class moa.tasks.LearnModel
 
maxInstancesOption - Variable in class moa.tasks.LearnModelRegression
 
maxInstancesOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
maxInstInLeafTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Tip text for this property.
maxMemberCount - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
maxMemoryOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the memory limit for the created model.
maxNodeCapacity - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
maxNodes - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
maxNodesOption - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
maxNumKernelsOption - Variable in class moa.clusterers.clustream.Clustream
 
maxNumKernelsOption - Variable in class moa.clusterers.clustream.WithKmeans
 
MaxOptionLevelOption - Variable in class moa.classifiers.trees.ORTO
 
maxOptionPathsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
MAXPERMANENT - Static variable in class moa.classifiers.meta.ADACC
Maximum number of snapshots (copies of classifiers kept in case of recurrence)
maxPosterior - Variable in class moa.classifiers.active.ActiveClassifier
 
maxPredictionPaths - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
maxRating - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
maxSize - Variable in class moa.classifiers.trees.ASHoeffdingTree
 
maxStoredCount - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
maxTreeDepthOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
MaxTreesOption - Variable in class moa.classifiers.trees.ORTO
 
maxVal - Variable in class moa.options.FloatOption
 
maxVal - Variable in class moa.options.IntOption
 
maxValueObservedPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
mc - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
mcc - Variable in class moa.clusterers.outliers.MCOD.MicroCluster
 
mcCorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
mcCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
mcCorrectWeight - Variable in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
MCOD - Class in moa.clusterers.outliers.MCOD
 
MCOD() - Constructor for class moa.clusterers.outliers.MCOD.MCOD
 
MCODBase - Class in moa.clusterers.outliers.MCOD
 
MCODBase() - Constructor for class moa.clusterers.outliers.MCOD.MCODBase
 
MCODBase.EventItem - Class in moa.clusterers.outliers.MCOD
 
MCODBase.EventItem(ISBIndex.ISBNode, Long) - Constructor for class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
MCODBase.EventQueue - Class in moa.clusterers.outliers.MCOD
 
MCODBase.EventQueue() - Constructor for class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
mean - Variable in class moa.core.GaussianEstimator
 
measureByteSize() - Method in class moa.AbstractMOAObject
 
measureByteSize(MOAObject) - Static method in class moa.AbstractMOAObject
Gets the memory size of an object.
measureByteSize() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
measureByteSize() - Method in class moa.classifiers.trees.HoeffdingTree
 
measureByteSize() - Method in class moa.core.AutoExpandVector
 
measureByteSize() - Method in interface moa.MOAObject
Gets the memory size of this object.
MeasureCollection - Class in moa.evaluation
 
MeasureCollection() - Constructor for class moa.evaluation.MeasureCollection
 
measureCollectionTypeOption - Variable in class moa.tasks.EvaluateClustering
 
measureMaxDepth() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the depth of the tree.
Measurement - Class in moa.core
Class for storing an evaluation measurement.
Measurement(String, double) - Constructor for class moa.core.Measurement
 
measurementNames - Variable in class moa.evaluation.LearningCurve
 
measurements - Variable in class moa.evaluation.LearningEvaluation
 
measurementValues - Variable in class moa.evaluation.LearningCurve
 
measureNumLeaves() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the number of leaves.
measureObjectByteSize(Serializable) - Static method in class moa.core.SerializeUtils
 
measurePerformanceTipText() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the tip text for this property.
MeasureStreamSpeed - Class in moa.tasks
Task for measuring the speed of the stream.
MeasureStreamSpeed() - Constructor for class moa.tasks.MeasureStreamSpeed
 
measureTreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
measureTreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree
 
measureTreeSize() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the size of the tree.
MedianOfWidestDimension - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a KDTree node based on the median value of a dimension in which the node's points have the widest spread.

For more information see also:

Jerome H.
MedianOfWidestDimension() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
 
MEKAClassifier - Class in moa.classifiers.multilabel
Class for using a MEKA classifier.
MEKAClassifier() - Constructor for class moa.classifiers.multilabel.MEKAClassifier
 
memberCountOption - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Number of component classifiers.
memberCountOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Number of component classifiers.
memberCountOption - Variable in class moa.classifiers.meta.DACC
Ensemble size
memberCountOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Number of component classifiers.
MembershipMatrix - Class in moa.evaluation
 
MembershipMatrix(Clustering, ArrayList<DataPoint>) - Constructor for class moa.evaluation.MembershipMatrix
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the frequency of memory checks.
memCheckFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequential
 
memCheckFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
memCheckFrequencyOption - Variable in class moa.tasks.LearnModel
 
memCheckFrequencyOption - Variable in class moa.tasks.LearnModelRegression
 
memoryEstimatePeriodOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
memoryEstimatePeriodOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
memoryStrategyOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
MemRecommenderData - Class in moa.recommender.data
 
MemRecommenderData() - Constructor for class moa.recommender.data.MemRecommenderData
 
MemRecommenderData - Class in moa.recommender.rc.data.impl
 
MemRecommenderData() - Constructor for class moa.recommender.rc.data.impl.MemRecommenderData
 
MemRecommenderData.RatingIterator - Class in moa.recommender.rc.data.impl
 
merge(SphereCluster) - Method in class moa.cluster.SphereCluster
 
mergeEntries(int, int) - Method in class moa.clusterers.clustree.Node
Merge the two entries at the given position.
mergeWith(Entry) - Method in class moa.clusterers.clustree.Entry
Merge this entry witht the given Entry.
merit - Variable in class moa.classifiers.core.AttributeSplitSuggestion
 
MetaMultilabelGenerator - Class in moa.streams.generators.multilabel
Stream generator for multilabel data.
MetaMultilabelGenerator() - Constructor for class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
metaRandomSeedOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
MicroCluster - Class in moa.clusterers.denstream
 
MicroCluster(double[], int, long, double, Timestamp) - Constructor for class moa.clusterers.denstream.MicroCluster
 
MicroCluster(Instance, int, long, double, Timestamp) - Constructor for class moa.clusterers.denstream.MicroCluster
 
MicroCluster - Class in moa.clusterers.outliers.MCOD
 
MicroCluster(ISBIndex.ISBNode) - Constructor for class moa.clusterers.outliers.MCOD.MicroCluster
 
MidPointOfWidestDimension - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a KDTree node based on the midpoint value of a dimension in which the node's points have the widest spread.

For more information see also:

Andrew Moore (1991).
MidPointOfWidestDimension() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.RegressionTaskManagerPanel
 
MILLISECS_BETWEEN_REFRESH - Static variable in class moa.gui.TaskManagerPanel
 
MIN - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
The index of MIN value in attributes' range array.
MIN - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Index of min value in an array of attributes' range.
MIN_VARIANCE - Static variable in class moa.clusterers.clustream.ClustreamKernel
 
MIN_VARIANCE - Static variable in class moa.clusterers.clustree.ClusKernel
 
minBoxRelWidthTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Tip text for this property.
minBranchFracOption - Variable in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
Miniball - Class in moa.cluster
Java Porting of the Miniball.h code of Bernd Gaertner.
Miniball(int) - Constructor for class moa.cluster.Miniball
 
minimumValue - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
minMax(Iterable<T>) - Static method in class moa.clusterers.outliers.utils.mtree.utils.Utils
Identifies the minimum and maximum elements from an iterable, according to the natural ordering of the elements.
minNodeCapacity - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.CusumDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.DDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.EWMAChartDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
minNumInstancesOption - Variable in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
minRating - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
minVal - Variable in class moa.options.FloatOption
 
minVal - Variable in class moa.options.IntOption
 
minValueObservedPerClass - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
minWeight() - Method in class moa.core.DoubleVector
 
MiscUtils - Class in moa.core
Class implementing some utility methods.
MiscUtils() - Constructor for class moa.core.MiscUtils
 
missingWeightObserved - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
MLOzaBag - Class in moa.classifiers.multilabel.meta
OzaBag for Multi-label data.
MLOzaBag() - Constructor for class moa.classifiers.multilabel.meta.MLOzaBag
 
MLOzaBagAdwin - Class in moa.classifiers.multilabel.meta
MLOzaBagAdwin: Changes the way to compute accuracy as an input for Adwin
MLOzaBagAdwin() - Constructor for class moa.classifiers.multilabel.meta.MLOzaBagAdwin
 
moa - package moa
 
MOA - Class in weka.classifiers.meta
Wrapper for MOA classifiers.

Since MOA doesn't offer a mechanism to query a classifier for the types of attributes and classes it can handle, the capabilities of this wrapper are hard-coded: nominal and numeric attributes and only nominal class attributes are allowed.
MOA() - Constructor for class weka.classifiers.meta.MOA
 
MOA - Class in weka.datagenerators.classifiers.classification
A wrapper around MOA instance streams.
MOA() - Constructor for class weka.datagenerators.classifiers.classification.MOA
 
moa.classifiers - package moa.classifiers
 
moa.classifiers.active - package moa.classifiers.active
 
moa.classifiers.bayes - package moa.classifiers.bayes
 
moa.classifiers.core - package moa.classifiers.core
 
moa.classifiers.core.attributeclassobservers - package moa.classifiers.core.attributeclassobservers
 
moa.classifiers.core.conditionaltests - package moa.classifiers.core.conditionaltests
 
moa.classifiers.core.driftdetection - package moa.classifiers.core.driftdetection
 
moa.classifiers.core.splitcriteria - package moa.classifiers.core.splitcriteria
 
moa.classifiers.drift - package moa.classifiers.drift
 
moa.classifiers.functions - package moa.classifiers.functions
 
moa.classifiers.lazy - package moa.classifiers.lazy
 
moa.classifiers.lazy.neighboursearch - package moa.classifiers.lazy.neighboursearch
 
moa.classifiers.lazy.neighboursearch.kdtrees - package moa.classifiers.lazy.neighboursearch.kdtrees
 
moa.classifiers.meta - package moa.classifiers.meta
 
moa.classifiers.multilabel - package moa.classifiers.multilabel
 
moa.classifiers.multilabel.meta - package moa.classifiers.multilabel.meta
 
moa.classifiers.rules - package moa.classifiers.rules
 
moa.classifiers.rules.core - package moa.classifiers.rules.core
 
moa.classifiers.rules.core.attributeclassobservers - package moa.classifiers.rules.core.attributeclassobservers
 
moa.classifiers.rules.core.conditionaltests - package moa.classifiers.rules.core.conditionaltests
 
moa.classifiers.rules.core.splitcriteria - package moa.classifiers.rules.core.splitcriteria
 
moa.classifiers.rules.core.voting - package moa.classifiers.rules.core.voting
 
moa.classifiers.rules.driftdetection - package moa.classifiers.rules.driftdetection
 
moa.classifiers.rules.functions - package moa.classifiers.rules.functions
 
moa.classifiers.rules.nodes - package moa.classifiers.rules.nodes
 
moa.classifiers.trees - package moa.classifiers.trees
 
moa.cluster - package moa.cluster
 
moa.clusterers - package moa.clusterers
 
moa.clusterers.clustream - package moa.clusterers.clustream
 
moa.clusterers.clustree - package moa.clusterers.clustree
 
moa.clusterers.clustree.util - package moa.clusterers.clustree.util
 
moa.clusterers.denstream - package moa.clusterers.denstream
 
moa.clusterers.macro - package moa.clusterers.macro
 
moa.clusterers.macro.dbscan - package moa.clusterers.macro.dbscan
 
moa.clusterers.outliers - package moa.clusterers.outliers
 
moa.clusterers.outliers.AbstractC - package moa.clusterers.outliers.AbstractC
 
moa.clusterers.outliers.Angiulli - package moa.clusterers.outliers.Angiulli
 
moa.clusterers.outliers.AnyOut - package moa.clusterers.outliers.AnyOut
 
moa.clusterers.outliers.AnyOut.util - package moa.clusterers.outliers.AnyOut.util
 
moa.clusterers.outliers.MCOD - package moa.clusterers.outliers.MCOD
 
moa.clusterers.outliers.SimpleCOD - package moa.clusterers.outliers.SimpleCOD
 
moa.clusterers.outliers.utils.mtree - package moa.clusterers.outliers.utils.mtree
 
moa.clusterers.outliers.utils.mtree.utils - package moa.clusterers.outliers.utils.mtree.utils
 
moa.clusterers.streamkm - package moa.clusterers.streamkm
 
moa.core - package moa.core
 
moa.core.utils - package moa.core.utils
 
moa.evaluation - package moa.evaluation
 
moa.gui - package moa.gui
 
moa.gui.clustertab - package moa.gui.clustertab
 
moa.gui.conceptdrift - package moa.gui.conceptdrift
 
moa.gui.outliertab - package moa.gui.outliertab
 
moa.gui.visualization - package moa.gui.visualization
 
moa.learners - package moa.learners
 
moa.options - package moa.options
 
moa.recommender.data - package moa.recommender.data
 
moa.recommender.dataset - package moa.recommender.dataset
 
moa.recommender.dataset.impl - package moa.recommender.dataset.impl
 
moa.recommender.predictor - package moa.recommender.predictor
 
moa.recommender.rc.data - package moa.recommender.rc.data
 
moa.recommender.rc.data.impl - package moa.recommender.rc.data.impl
 
moa.recommender.rc.predictor - package moa.recommender.rc.predictor
 
moa.recommender.rc.predictor.impl - package moa.recommender.rc.predictor.impl
 
moa.recommender.rc.utils - package moa.recommender.rc.utils
 
moa.streams - package moa.streams
 
moa.streams.clustering - package moa.streams.clustering
 
moa.streams.filters - package moa.streams.filters
 
moa.streams.generators - package moa.streams.generators
 
moa.streams.generators.cd - package moa.streams.generators.cd
 
moa.streams.generators.multilabel - package moa.streams.generators.multilabel
 
moa.tasks - package moa.tasks
 
MOAClassOptionEditor - Class in weka.gui
An editor for MOA ClassOption objects.
MOAClassOptionEditor() - Constructor for class weka.gui.MOAClassOptionEditor
 
MOAObject - Interface in moa
Interface implemented by classes in MOA, so that all are serializable, can produce copies of their objects, and can measure its memory size.
MOAUtils - Class in weka.core
A helper class for MOA related classes.
MOAUtils() - Constructor for class weka.core.MOAUtils
 
modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.classifiers.AbstractClassifier
Gets the index of the attribute in the instance, given the index of the attribute in the learner.
modelAttIndexToInstanceAttIndex(int, Instances) - Static method in class moa.classifiers.AbstractClassifier
Gets the index of the attribute in a set of instances, given the index of the attribute in the learner.
modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.classifiers.rules.AbstractAMRules
Gets the index of the attribute in the instance, given the index of the attribute in the learner.
modelAttIndexToInstanceAttIndex(int, Instance) - Static method in class moa.clusterers.AbstractClusterer
 
modelAttIndexToInstanceAttIndex(int, Instances) - Static method in class moa.clusterers.AbstractClusterer
 
modelContext - Variable in class moa.classifiers.AbstractClassifier
Header of the instances of the data stream
modelContext - Variable in class moa.clusterers.AbstractClusterer
 
modelOption - Variable in class moa.tasks.EvaluateModel
 
modelOption - Variable in class moa.tasks.EvaluateModelRegression
 
modelRandomSeedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
modelRandomSeedOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
modifyDependencyMatrix(boolean[][], double, Random) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
ModifyDependencyMatrix.
modifyPriorVector(double[], double, Random, boolean) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
ModifyPriorVector.
monitorMeanDecr(double, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
monitorMeanIncr(double, double) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
moreImprovementsPossible(int, double) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
mouseClicked(int, int) - Method in interface moa.gui.AWTInteractiveRenderer
 
MovielensDataset - Class in moa.recommender.dataset.impl
 
MovielensDataset() - Constructor for class moa.recommender.dataset.impl.MovielensDataset
 
mse_r - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
The mean square residual in a given moment, based on a window of latest examples.
MTRandom - Class in moa.clusterers.streamkm
 
MTRandom() - Constructor for class moa.clusterers.streamkm.MTRandom
The default constructor for an instance of MTRandom.
MTRandom(boolean) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor can be used to implement identical behaviour to the original C code version of this algorithm including exactly replicating the case where the seed value had not been set prior to calling genrand_int32.
MTRandom(long) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor simply initialises the class with the given 64 bit seed value.
MTRandom(byte[]) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor initialises the class with the given byte array.
MTRandom(int[]) - Constructor for class moa.clusterers.streamkm.MTRandom
This version of the constructor initialises the class with the given integer array.
MTree<DATA> - Class in moa.clusterers.outliers.utils.mtree
The main class that implements the M-Tree.
MTree(DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
Constructs an M-Tree with the specified distance function.
MTree(int, DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
Constructs an M-Tree with the specified minimum node capacity and distance function.
MTree(int, int, DistanceFunction<? super DATA>, SplitFunction<DATA>) - Constructor for class moa.clusterers.outliers.utils.mtree.MTree
Constructs an M-Tree with the specified minimum and maximum node capacities and distance function.
MTree.Query - Class in moa.clusterers.outliers.utils.mtree
An Iterable class which can be iterated to fetch the results of a nearest-neighbors query.
MTree.ResultItem - Class in moa.clusterers.outliers.utils.mtree
The type of the results for nearest-neighbor queries.
mtreeMC - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
MultiChoiceOption - Class in moa.options
Multi choice option.
MultiChoiceOption(String, char, String, String[], String[], int) - Constructor for class moa.options.MultiChoiceOption
 
MultiChoiceOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a multi choice option.
MultiChoiceOptionEditComponent(MultiChoiceOption) - Constructor for class moa.gui.MultiChoiceOptionEditComponent
 
MultiFilteredStream - Class in moa.streams
Class for representing a stream that is filtered.
MultiFilteredStream() - Constructor for class moa.streams.MultiFilteredStream
 
MultilabelArffFileStream - Class in moa.streams.generators.multilabel
Stream reader for ARFF files of multilabel data.
MultilabelArffFileStream() - Constructor for class moa.streams.generators.multilabel.MultilabelArffFileStream
 
MultilabelArffFileStream(String, int) - Constructor for class moa.streams.generators.multilabel.MultilabelArffFileStream
 
MultilabelHoeffdingTree - Class in moa.classifiers.multilabel
Hoeffding Tree for classifying multi-label data.
MultilabelHoeffdingTree() - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
MultilabelHoeffdingTree.MultilabelInactiveLearningNode - Class in moa.classifiers.multilabel
 
MultilabelHoeffdingTree.MultilabelInactiveLearningNode(double[]) - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelInactiveLearningNode
 
MultilabelHoeffdingTree.MultilabelLearningNodeClassifier - Class in moa.classifiers.multilabel
 
MultilabelHoeffdingTree.MultilabelLearningNodeClassifier(double[], Classifier, MultilabelHoeffdingTree) - Constructor for class moa.classifiers.multilabel.MultilabelHoeffdingTree.MultilabelLearningNodeClassifier
 
MultilabelInstance - Class in moa.core
Multilabel instance.
MultilabelInstance() - Constructor for class moa.core.MultilabelInstance
 
MultilabelInstancesHeader - Class in moa.core
Class for storing the header or context of a multilabel data stream.
MultilabelInstancesHeader(Instances, int) - Constructor for class moa.core.MultilabelInstancesHeader
 
multilabelStreamTemplate - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
MultilabelWindowClassificationPerformanceEvaluator - Class in moa.evaluation
Multilabel Window Classification Performance Evaluator.
MultilabelWindowClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
 
multivariateAnomalyProbabilityThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
muOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
mVisibleColors - Static variable in class moa.clusterers.macro.ColorArray
 
MyBaseOutlierDetector - Class in moa.clusterers.outliers
 
MyBaseOutlierDetector() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector
 
MyBaseOutlierDetector.Outlier - Class in moa.clusterers.outliers
 
MyBaseOutlierDetector.Outlier(Instance, long, Object) - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
MyBaseOutlierDetector.OutlierNotifier - Class in moa.clusterers.outliers
 
MyBaseOutlierDetector.OutlierNotifier() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.OutlierNotifier
 
MyBaseOutlierDetector.PrintMsg - Interface in moa.clusterers.outliers
 
MyBaseOutlierDetector.ProgressInfo - Interface in moa.clusterers.outliers
 
MyBaseOutlierDetector.StdPrintMsg - Class in moa.clusterers.outliers
 
MyBaseOutlierDetector.StdPrintMsg() - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
MyBaseOutlierDetector.StdPrintMsg(String) - Constructor for class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
myOut - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
myProgressInfo - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 

N

n - Variable in class moa.classifiers.rules.functions.TargetMean
 
N - Variable in class moa.cluster.CFCluster
Number of points in the cluster.
n_max - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
n_min - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
NaiveBayes - Class in moa.classifiers.bayes
Naive Bayes incremental learner.
NaiveBayes() - Constructor for class moa.classifiers.bayes.NaiveBayes
 
NaiveBayesMultinomial - Class in moa.classifiers.bayes
Class for building and using a multinomial Naive Bayes classifier.
NaiveBayesMultinomial() - Constructor for class moa.classifiers.bayes.NaiveBayesMultinomial
 
name - Variable in class moa.core.Measurement
 
name - Variable in class moa.options.AbstractOption
Name of this option.
nameIsLegal(String) - Static method in class moa.options.AbstractOption
Gets whether the name is valid or not.
nanoTimeToSeconds(long) - Static method in class moa.core.TimingUtils
 
nbCorrectWeight - Variable in class moa.classifiers.trees.AdaHoeffdingOptionTree.AdaLearningNode
 
nbCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingOptionTree.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.HoeffdingTree.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LearningNodeNBAdaptive
 
nbCorrectWeight - Variable in class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
nbInstances - Variable in class moa.classifiers.meta.DACC
Number of instances from the stream
nbThresholdOption - Variable in class moa.classifiers.rules.RuleClassifierNBayes
 
nbThresholdOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
nbThresholdOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
nearestEntry(ClusKernel) - Method in class moa.clusterers.clustree.Node
Returns the neareast Entry to the given Cluster.
nearestEntry(Entry) - Method in class moa.clusterers.clustree.Node
Return the nearest entry to the given one.
nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the nearest neighbour of the supplied target instance.
nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns the nearest instance in the current neighbourhood to the supplied instance.
nearestNeighbour(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Returns the nearest instance in the current neighbourhood to the supplied instance.
NearestNeighbourSearch - Class in moa.classifiers.lazy.neighboursearch
Abstract class for nearest neighbour search.
NearestNeighbourSearch() - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Constructor.
NearestNeighbourSearch(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Constructor.
NearestNeighbourSearch.MyHeap - Class in moa.classifiers.lazy.neighboursearch
A class for a heap to store the nearest k neighbours to an instance.
NearestNeighbourSearch.MyHeap(int) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
constructor.
NearestNeighbourSearch.MyHeapElement - Class in moa.classifiers.lazy.neighboursearch
A class for storing data about a neighboring instance.
NearestNeighbourSearch.MyHeapElement(int, double) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeapElement
constructor.
NearestNeighbourSearch.NeighborList - Class in moa.classifiers.lazy.neighboursearch
A class for a linked list to store the nearest k neighbours to an instance.
NearestNeighbourSearch.NeighborList(int) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Creates the neighborlist with a desired length.
NearestNeighbourSearch.NeighborNode - Class in moa.classifiers.lazy.neighboursearch
A class for storing data about a neighboring instance.
NearestNeighbourSearch.NeighborNode(double, Instance, NearestNeighbourSearch.NeighborNode) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
Create a new neighbor node.
NearestNeighbourSearch.NeighborNode(double, Instance) - Constructor for class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborNode
Create a new neighbor node that doesn't link to any other nodes.
nearestNeighbourSearchOption - Variable in class moa.classifiers.lazy.kNN
 
negLambda - Variable in class moa.clusterers.clustree.ClusTree
Parameter for the weighting function use to weight the entries.
nError - Variable in class moa.classifiers.rules.functions.TargetMean
 
nEstimacion - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
newclassifier - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
newClassifierReset - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
newErrorWeightedVote() - Method in class moa.classifiers.rules.AbstractAMRules
 
newErrorWeightedVote() - Method in class moa.classifiers.rules.AMRulesRegressor
 
newLeafModel() - Method in class moa.classifiers.trees.FIMTDD
 
newLeafNode() - Method in class moa.classifiers.trees.FIMTDD
 
newLearningNode(double[]) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
 
newLearningNode(double[], Classifier) - Method in class moa.classifiers.multilabel.HoeffdingTreeClassifLeaves
 
newLearningNode(double[]) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
newLearningNode(double[], Classifier) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.AdaHoeffdingOptionTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
newLearningNode() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newLearningNode() - Method in class moa.classifiers.trees.HoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.HoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
newLearningNode(double[]) - Method in class moa.classifiers.trees.RandomHoeffdingTree
 
newline - Static variable in class moa.core.StringUtils
 
newNominalClassObserver() - Method in class moa.classifiers.bayes.NaiveBayes
 
newNominalClassObserver() - Method in class moa.classifiers.rules.RuleClassifier
 
newNominalClassObserver() - Method in class moa.classifiers.trees.DecisionStump
 
newNominalClassObserver() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newNominalClassObserver() - Method in class moa.classifiers.trees.HoeffdingTree
 
newNumericClassObserver() - Method in class moa.classifiers.bayes.NaiveBayes
 
newNumericClassObserver() - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
newNumericClassObserver() - Method in class moa.classifiers.rules.RuleClassifier
 
newNumericClassObserver() - Method in class moa.classifiers.trees.DecisionStump
 
newNumericClassObserver() - Method in class moa.classifiers.trees.FIMTDD
 
newNumericClassObserver() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
newNumericClassObserver() - Method in class moa.classifiers.trees.HoeffdingTree
 
newNumericClassObserver() - Method in class moa.classifiers.trees.ORTO
 
newNumericClassObserver2() - Method in class moa.classifiers.rules.RuleClassifier
 
newRule(int, RuleActiveLearningNode, double[]) - Method in class moa.classifiers.rules.AbstractAMRules
Rule.Builder() to build an object with the parameters.
newRule(int, RuleActiveLearningNode, double[]) - Method in class moa.classifiers.rules.AMRulesRegressor
 
newRuleActiveLearningNode(Rule.Builder) - Method in class moa.classifiers.rules.AbstractAMRules
 
newRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.AbstractAMRules
 
newRuleActiveLearningNode(Rule.Builder) - Method in class moa.classifiers.rules.AMRulesRegressor
 
newRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.AMRulesRegressor
 
newSplitNode(InstanceConditionalTest) - Method in class moa.classifiers.trees.FIMTDD
 
newSplitNode(InstanceConditionalTest, double[]) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
newSplitNode(InstanceConditionalTest, double[], int) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
newSplitNode(InstanceConditionalTest, double[], int) - Method in class moa.classifiers.trees.HoeffdingTree
 
newSplitNode(InstanceConditionalTest, double[]) - Method in class moa.classifiers.trees.HoeffdingTree
 
newThreshold - Variable in class moa.classifiers.active.ActiveClassifier
 
next(int) - Method in class moa.clusterers.streamkm.MTRandom
This method forms the basis for generating a pseudo random number sequence from this class.
next() - Method in interface moa.recommender.dataset.Dataset
 
next() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
next() - Method in class moa.recommender.dataset.impl.JesterDataset
 
next() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
next() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
 
next() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
next() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.AgrawalGenerator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.SEAGenerator
 
nextClassShouldBeZero - Variable in class moa.streams.generators.STAGGERGenerator
 
nextInstance() - Method in class moa.streams.ArffFileStream
 
nextInstance() - Method in class moa.streams.CachedInstancesStream
 
nextInstance() - Method in class moa.streams.clustering.FileStream
 
nextInstance() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
nextInstance() - Method in class moa.streams.ConceptDriftRealStream
 
nextInstance() - Method in class moa.streams.ConceptDriftStream
 
nextInstance() - Method in class moa.streams.FilteredStream
 
nextInstance() - Method in class moa.streams.filters.AddNoiseFilter
 
nextInstance() - Method in class moa.streams.filters.CacheFilter
 
nextInstance() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
nextInstance() - Method in class moa.streams.generators.AgrawalGenerator
 
nextInstance() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
nextInstance() - Method in class moa.streams.generators.HyperplaneGenerator
 
nextInstance() - Method in class moa.streams.generators.LEDGenerator
 
nextInstance() - Method in class moa.streams.generators.LEDGeneratorDrift
 
nextInstance() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
GenerateML.
nextInstance() - Method in class moa.streams.generators.RandomRBFGenerator
 
nextInstance() - Method in class moa.streams.generators.RandomRBFGeneratorDrift
 
nextInstance() - Method in class moa.streams.generators.RandomTreeGenerator
 
nextInstance() - Method in class moa.streams.generators.SEAGenerator
 
nextInstance() - Method in class moa.streams.generators.STAGGERGenerator
 
nextInstance() - Method in class moa.streams.generators.WaveformGenerator
 
nextInstance() - Method in class moa.streams.generators.WaveformGeneratorDrift
 
nextInstance() - Method in interface moa.streams.InstanceStream
Gets the next instance from this stream.
nextInstance() - Method in class moa.streams.MultiFilteredStream
 
nextOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
nextValue() - Method in class moa.streams.generators.cd.AbruptChangeGenerator
 
nextValue() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
nextValue() - Method in class moa.streams.generators.cd.GradualChangeGenerator
 
nextValue() - Method in class moa.streams.generators.cd.NoChangeGenerator
 
nFeatures - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
nInlier - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
nInlier - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
nInlier - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
nInlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
nItems - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
nIterations - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
noAnomalyDetectionOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
NoChange - Class in moa.classifiers.functions
NoChange class classifier.
NoChange() - Constructor for class moa.classifiers.functions.NoChange
 
NoChangeGenerator - Class in moa.streams.generators.cd
 
NoChangeGenerator() - Constructor for class moa.streams.generators.cd.NoChangeGenerator
 
node - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
node - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
 
Node - Class in moa.clusterers.clustree
 
Node(int, int) - Constructor for class moa.clusterers.clustree.Node
Initialze a normal node, which is not fake.
Node(int, int, int, boolean) - Constructor for class moa.clusterers.clustree.Node
Initialiazes a node which is a fake root depending on the given boolean.
Node(int, int, Entry[]) - Constructor for class moa.clusterers.clustree.Node
USED FOR EM_TOP_DOWN BULK LOADING
node - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
node - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBSearchResult
 
node - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
nodeList - Variable in class moa.classifiers.rules.core.Rule
 
nodes - Variable in class moa.clusterers.outliers.MCOD.MicroCluster
 
nodeSplitterTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the tip text for this property.
nodesReinsert - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
nodeStatistics - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
nodeStatistics - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
nodesToAdapt - Variable in class moa.classifiers.trees.ORTO
 
nodeType - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
noiseInClusterOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
noiseLabel - Variable in class moa.gui.visualization.DataPoint
 
noiseLevelOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
noisePercentageOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
noisePercentageOption - Variable in class moa.streams.generators.LEDGenerator
 
noisePercentageOption - Variable in class moa.streams.generators.SEAGenerator
 
NominalAttributeBinaryRulePredicate - Class in moa.classifiers.rules.core.conditionaltests
Nominal binary conditional test for instances to use to split nodes in rules.
NominalAttributeBinaryRulePredicate(int, int) - Constructor for class moa.classifiers.rules.core.conditionaltests.NominalAttributeBinaryRulePredicate
 
NominalAttributeBinaryTest - Class in moa.classifiers.core.conditionaltests
Nominal binary conditional test for instances to use to split nodes in Hoeffding trees.
NominalAttributeBinaryTest(int, int) - Constructor for class moa.classifiers.core.conditionaltests.NominalAttributeBinaryTest
 
NominalAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a nominal attribute.
NominalAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
NominalAttributeMultiwayTest - Class in moa.classifiers.core.conditionaltests
Nominal multi way conditional test for instances to use to split nodes in Hoeffding trees.
NominalAttributeMultiwayTest(int) - Constructor for class moa.classifiers.core.conditionaltests.NominalAttributeMultiwayTest
 
nominalEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
nominalEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
nominalReplacementStrategyOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
nominalSelectedStrategy - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
NonConvexCluster - Class in moa.clusterers.macro
 
NonConvexCluster(CFCluster, List<CFCluster>) - Constructor for class moa.clusterers.macro.NonConvexCluster
 
noOfKthNearest() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the number of k nearest.
noPrePruneOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
noPrePruneOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
norm(double, int) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Normalizes a given value of a numeric attribute.
norm() - Method in class moa.recommender.rc.utils.Vector
 
NORMAL_CONSTANT - Static variable in class moa.classifiers.rules.AbstractAMRules
 
NORMAL_CONSTANT - Static variable in class moa.core.GaussianEstimator
 
NormalizableDistance - Class in moa.classifiers.lazy.neighboursearch
Represents the abstract ancestor for normalizable distance functions, like Euclidean or Manhattan distance.
NormalizableDistance() - Constructor for class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Invalidates the distance function, Instances must be still set.
NormalizableDistance(Instances) - Constructor for class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Initializes the distance function and automatically initializes the ranges.
normalize(double[]) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
normalize() - Method in class moa.core.DoubleVector
 
normalizedInstance(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
 
normalizedInstance(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
normalizedPrediction(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
 
normalizeNodeWidthTipText() - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Tip text for this property.
normalizeOption - Variable in class moa.streams.clustering.FileStream
 
normalizeTargetValue(double) - Method in class moa.classifiers.trees.FIMTDD
 
normalizeWeights() - Method in class moa.classifiers.rules.functions.Perceptron
 
notBinaryStreamOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
notifyChangeListeners() - Method in class moa.gui.ClassOptionEditComponent
Notifies all registered change listeners that the options have changed.
notifyChangeListeners() - Method in class moa.gui.ClassOptionWithNamesEditComponent
Notifies all registered change listeners that the options have changed.
nOutlier - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
nOutlier - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
nOutlier - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
nOutlier - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
nr_points() - Method in class moa.cluster.Miniball
Return the actual number of points in the list
nr_support_points() - Method in class moa.cluster.Miniball
Return the number of support points (used to calculate the miniball).
It's and internal info
nRangeQueriesExecuted - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
nRatings - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
nTimePerObj - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
nTotalRunTime - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
NullAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a null attribute.
NullAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
NullMonitor - Class in moa.tasks
Class that represents a null monitor.
NullMonitor() - Constructor for class moa.tasks.NullMonitor
 
nullString - Variable in class moa.options.AbstractClassOption
The null text.
NUM_BASE_ATTRIBUTES - Static variable in class moa.streams.generators.WaveformGenerator
 
NUM_CLASSES - Static variable in class moa.streams.generators.WaveformGenerator
 
NUM_IRRELEVANT_ATTRIBUTES - Static variable in class moa.streams.generators.LEDGenerator
 
numAttributes - Variable in class moa.classifiers.meta.RandomRules
 
numAttributes - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
numAttributes - Variable in class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
numAttributes - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
numAttributesOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
numAttributesPercentageOption - Variable in class moa.classifiers.meta.RandomRules
 
numAttsOption - Variable in class moa.streams.clustering.ClusteringStream
 
numAttsOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
numAttsOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
numberAttribute - Variable in class moa.streams.generators.LEDGeneratorDrift
 
numberAttribute - Variable in class moa.streams.generators.WaveformGeneratorDrift
 
numberAttributes - Variable in class moa.classifiers.functions.Perceptron
 
numberAttributes - Variable in class moa.classifiers.meta.LimAttClassifier
 
numberAttributesDriftOption - Variable in class moa.streams.generators.LEDGeneratorDrift
 
numberAttributesDriftOption - Variable in class moa.streams.generators.WaveformGeneratorDrift
 
numberChanges - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numberClasses - Variable in class moa.classifiers.functions.Perceptron
 
numberDetections - Variable in class moa.classifiers.functions.Perceptron
 
numberDetections - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numberDetectionsOccurred - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numberInstance - Variable in class moa.streams.generators.HyperplaneGenerator
 
numberInstances - Variable in class moa.classifiers.meta.WEKAClassifier
 
numberInstances - Variable in class moa.clusterers.streamkm.StreamKM
 
numberInstanceStream - Variable in class moa.streams.ConceptDriftRealStream
 
numberInstanceStream - Variable in class moa.streams.ConceptDriftStream
 
numberLeaves() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
numberLeaves() - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
numberLeaves() - Method in interface moa.classifiers.trees.HoeffdingAdaptiveTree.NewNode
 
numberOfBuckets - Variable in class moa.clusterers.streamkm.BucketManager
 
numberOfCentres - Variable in class moa.clusterers.streamkm.StreamKM
 
numberOfChangesDetected - Variable in class moa.classifiers.meta.LeveragingBag
 
numberOfChangesDetected - Variable in class moa.classifiers.meta.LimAttClassifier
 
numberOfChangesDetected - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
numberOfClusters() - Method in class moa.clusterers.CobWeb
Returns the number of clusters.
numberOfSamples - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
numberWarnings - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
numBinsOption - Variable in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
numBinsOption - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
numBytesWritten - Variable in class moa.core.SerializeUtils.ByteCountingOutputStream
 
numCentroidsOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
numChildren() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
numChildren() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
numChildren() - Method in class moa.classifiers.trees.ORTO.InnerNode
 
numClasses - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
numClasses - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
numClasses - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
numClassesOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
numClassesOption - Variable in class moa.streams.generators.RandomRBFGenerator
 
numClassesOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numClusterOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
numClusterRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
numClustersOption - Variable in class moa.clusterers.streamkm.StreamKM
 
numDriftAttsOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
numDriftCentroidsOption - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
 
numEnsemblePruningOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
numEntries() - Method in class moa.evaluation.LearningCurve
 
numericalConstantValueOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
numericalSelectedStrategy - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
NumericAttributeBinaryRulePredicate - Class in moa.classifiers.rules.core.conditionaltests
Numeric binary conditional test for instances to use to split nodes in AMRules.
NumericAttributeBinaryRulePredicate(int, double, int) - Constructor for class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
NumericAttributeBinaryTest - Class in moa.classifiers.core.conditionaltests
Numeric binary conditional test for instances to use to split nodes in Hoeffding trees.
NumericAttributeBinaryTest(int, double, boolean) - Constructor for class moa.classifiers.core.conditionaltests.NumericAttributeBinaryTest
 
NumericAttributeClassObserver - Interface in moa.classifiers.core.attributeclassobservers
Interface for observing the class data distribution for a numeric attribute.
numericEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
numericEstimatorOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
numericEstimatorOption - Variable in class moa.classifiers.trees.ORTO
 
numericObserverOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
numericReplacementStrategyOption - Variable in class moa.streams.filters.ReplacingMissingValuesFilter
 
numFolds - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
numFoldsOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Number of folds in candidate classifier cross-validation.
numFreeEntries() - Method in class moa.clusterers.clustree.Node
Return the number of free Entrys in this node.
numInitPoints - Variable in class moa.clusterers.denstream.WithDBSCAN
 
numInstances() - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNode
Returns the number of Instances in the rectangular region defined by this node.
numInstances - Variable in class moa.classifiers.meta.LimAttClassifier
 
numInstances - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
numInstancesConcept - Variable in class moa.streams.generators.SEAGenerator
 
numInstancesConceptOption - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
numInstancesInitOption - Variable in class moa.classifiers.active.ActiveClassifier
 
numInstancesRead - Variable in class moa.streams.ArffFileStream
 
numInstancesRead - Variable in class moa.streams.clustering.FileStream
 
numLabelsOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
numLabelsOption - Variable in class moa.streams.generators.multilabel.MultilabelArffFileStream
 
numNodes - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
numNominalsOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numNonZeroEntries() - Method in class moa.core.DoubleVector
 
numNumericsOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numObservations - Variable in class moa.core.GreenwaldKhannaQuantileSummary
 
numOldLabelsOption - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
numOptions() - Method in class moa.options.Options
 
numPassesOption - Variable in class moa.tasks.LearnModel
 
numPassesOption - Variable in class moa.tasks.LearnModelRegression
 
numProcessedPerUnit - Variable in class moa.clusterers.denstream.WithDBSCAN
 
numSplits() - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
numSubsetsGreaterThanFrac(double[][], double) - Static method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
numTuples - Variable in class moa.core.GreenwaldKhannaQuantileSummary
 
numTuplesOption - Variable in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
numValsPerNominalOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
numValues() - Method in class moa.core.DoubleVector
 
nUsers - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 

O

oberversDistribProb(Instance, DoubleVector) - Method in class moa.classifiers.rules.RuleClassifier
 
obj - Variable in class moa.clusterers.outliers.AbstractC.ISBIndex.ISBNode
 
obj - Variable in class moa.clusterers.outliers.Angiulli.ISBIndex.ISBNode
 
obj - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
obj - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector.Outlier
 
obj - Variable in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
ObjectRepository - Interface in moa.core
Interface for object repositories.
objectToCLIString(Object, Class<?>) - Static method in class moa.options.ClassOption
 
objectToCLIString(Object, Class<?>) - Static method in class moa.options.ClassOptionWithNames
 
objectToCLIString(Object, Class<?>) - Static method in class moa.options.WEKAClassOption
 
objId - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
objId - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
objId - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
objId - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
obserClassDistrib - Variable in class moa.classifiers.rules.RuleClassification
 
observeAttributeClass(double, int, double) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
Updates statistics of this observer given an attribute value, a class and the weight of the instance observed
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
observeAttributeClass(double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
observeAttributeClass(double, int, double) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
observeAttributeClass(double, double, double) - Method in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver
 
observeAttributeTarget(double, double) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
observeAttributeTarget(double, double) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
observedClassDistribution - Variable in class moa.classifiers.bayes.NaiveBayes
 
observedClassDistribution - Variable in class moa.classifiers.functions.MajorityClass
 
observedClassDistribution - Variable in class moa.classifiers.rules.RuleClassifier
 
observedClassDistribution - Variable in class moa.classifiers.trees.DecisionStump
 
observedClassDistribution - Variable in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
observedClassDistribution - Variable in class moa.classifiers.trees.HoeffdingTree.Node
 
observedClassDistributionIsPure() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
observedClassDistributionIsPure() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
observers - Variable in class moa.classifiers.rules.RuleClassification
 
observersGauss - Variable in class moa.classifiers.rules.RuleClassification
 
OCBoost - Class in moa.classifiers.meta
Online Coordinate boosting for two classes evolving data streams.
OCBoost() - Constructor for class moa.classifiers.meta.OCBoost
 
oddsOffsetOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
offlineOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
oldLabels - Variable in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
oneSidedTest - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
oneSidedTestOption - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
oneSidedTestOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
OnInlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.OutlierNotifier
 
OnlineAccuracyUpdatedEnsemble - Class in moa.classifiers.meta
The online version of the Accuracy Updated Ensemble as proposed by Brzezinski and Stefanowski in "Combining block-based and online methods in learning ensembles from concept drifting data streams", Information Sciences, 2014.
OnlineAccuracyUpdatedEnsemble() - Constructor for class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory - Class in moa.classifiers.meta
 
OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory(Classifier, int) - Constructor for class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory
 
OnlineSmoothBoost - Class in moa.classifiers.meta
Incremental on-line boosting with Theoretical Justifications of Shang-Tse Chen, Hsuan-Tien Lin and Chi-Jen Lu.
OnlineSmoothBoost() - Constructor for class moa.classifiers.meta.OnlineSmoothBoost
 
OnOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.OutlierNotifier
 
operator - Variable in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
operatorObserver - Variable in class moa.classifiers.rules.nodes.RuleSplitNode
 
Option - Interface in moa.options
Interface representing an option or parameter.
optionArrayToCLIString(Option[], char) - Static method in class moa.options.ListOption
 
optionCount - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
OptionDecayFactorOption - Variable in class moa.classifiers.trees.ORTO
 
optionDescriptions - Variable in class moa.options.MultiChoiceOption
 
OptionEditComponent - Interface in moa.gui
Interface representing a component to edit an option.
OptionFadingFactorOption - Variable in class moa.classifiers.trees.ORTO
 
optionFFSeen - Variable in class moa.classifiers.trees.ORTO.OptionNode
 
optionFFSSL - Variable in class moa.classifiers.trees.ORTO.OptionNode
 
OptionHandler - Interface in moa.options
Interface representing an object that handles options or parameters.
optionLabels - Variable in class moa.options.MultiChoiceOption
 
optionList - Variable in class moa.options.Options
 
OptionNodeAggregationOption - Variable in class moa.classifiers.trees.ORTO
 
options - Variable in class moa.gui.OptionsConfigurationPanel
 
options - Variable in class moa.options.AbstractOptionHandler
Options to handle
Options - Class in moa.options
File option.
Options() - Constructor for class moa.options.Options
 
OptionsConfigurationPanel - Class in moa.gui
This panel displays an options configuration.
OptionsConfigurationPanel(String, Options) - Constructor for class moa.gui.OptionsConfigurationPanel
 
orderedRulesOption - Variable in class moa.classifiers.rules.RuleClassifier
 
originalInstances - Static variable in class moa.streams.generators.LEDGenerator
 
originalNode - Variable in class moa.classifiers.trees.FIMTDD.Node
 
ORTO - Class in moa.classifiers.trees
 
ORTO() - Constructor for class moa.classifiers.trees.ORTO
 
ORTO.ActiveLearningNode - Class in moa.classifiers.trees
 
ORTO.ActiveLearningNode(int) - Constructor for class moa.classifiers.trees.ORTO.ActiveLearningNode
 
ORTO.InnerNode - Class in moa.classifiers.trees
 
ORTO.InnerNode(int) - Constructor for class moa.classifiers.trees.ORTO.InnerNode
 
ORTO.Node - Class in moa.classifiers.trees
 
ORTO.Node(int) - Constructor for class moa.classifiers.trees.ORTO.Node
 
ORTO.OptionNode - Class in moa.classifiers.trees
 
ORTO.OptionNode(int) - Constructor for class moa.classifiers.trees.ORTO.OptionNode
 
ORTO.ORTOPerceptron - Class in moa.classifiers.trees
A Perceptron classifier modified to conform to the specifications of Ikonomovska et al.
ORTO.ORTOPerceptron(ORTO.ORTOPerceptron) - Constructor for class moa.classifiers.trees.ORTO.ORTOPerceptron
 
ORTO.ORTOPerceptron() - Constructor for class moa.classifiers.trees.ORTO.ORTOPerceptron
 
ORTO.SplitNode - Class in moa.classifiers.trees
 
ORTO.SplitNode(InstanceConditionalTest, int) - Constructor for class moa.classifiers.trees.ORTO.SplitNode
 
oScoreKOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
OutlierAlgoPanel - Class in moa.gui.outliertab
 
OutlierAlgoPanel() - Constructor for class moa.gui.outliertab.OutlierAlgoPanel
 
OutlierEvalPanel - Class in moa.gui.outliertab
 
OutlierEvalPanel() - Constructor for class moa.gui.outliertab.OutlierEvalPanel
Creates new form ClusteringEvalPanel
outlierNotifier - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
OutlierPanel - Class in moa.gui.visualization
 
OutlierPanel(MyBaseOutlierDetector, MyBaseOutlierDetector.Outlier, SphereCluster, Color, StreamOutlierPanel) - Constructor for class moa.gui.visualization.OutlierPanel
Creates new form ObjectPanel
OutlierPerformance - Class in moa.evaluation
 
OutlierPerformance() - Constructor for class moa.evaluation.OutlierPerformance
 
OutlierSetupTab - Class in moa.gui.outliertab
 
OutlierSetupTab() - Constructor for class moa.gui.outliertab.OutlierSetupTab
Creates new form outlierSetupTab
OutlierTabPanel - Class in moa.gui.outliertab
 
OutlierTabPanel() - Constructor for class moa.gui.outliertab.OutlierTabPanel
Creates new form ClusterTab
OutlierVisualEvalPanel - Class in moa.gui.outliertab
 
OutlierVisualEvalPanel() - Constructor for class moa.gui.outliertab.OutlierVisualEvalPanel
Creates new form OutlierEvalPanel
OutlierVisualTab - Class in moa.gui.outliertab
 
OutlierVisualTab() - Constructor for class moa.gui.outliertab.OutlierVisualTab
Creates new form OutlierVisualTab
outputCodesOption - Variable in class moa.classifiers.meta.LeveragingBag
 
outputCodesOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
outputFileOption - Variable in class moa.tasks.MainTask
File option to save the final result of the task to.
outputPredictionFileOption - Variable in class moa.tasks.EvaluateModel
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluateModelRegression
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequential
 
outputPredictionFileOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
outputTypeOption - Variable in class moa.tasks.Plot
Gnuplot terminal - postscript, png, pdf etc.
overlapRadiusDegree(SphereCluster) - Method in class moa.cluster.SphereCluster
Checks whether two SphereCluster overlap based on radius NOTE: overlapRadiusDegree only calculates the overlap based on the centers and the radi, so not the real overlap TODO: should we do this by MC to get the real overlap???
overlapSave(SphereCluster) - Method in class moa.cluster.SphereCluster
When a clusters looses points the new minimal bounding sphere can be partly outside of the originating cluster.
overwriteOldCluster(ClusKernel) - Method in class moa.clusterers.clustree.ClusKernel
Overwrites the LS, SS and weightedN in this cluster to the values of the given cluster but adds N and classCount of the given cluster to this one.
overwriteOldEntry(Entry) - Method in class moa.clusterers.clustree.Entry
Overwrites the LS, SS and weightedN in the data cluster of this Entry to the values of the data cluster in the given Entry, but adds N and classCount of the cluster in the given Entry to the data cluster in this one.
owner(Rule) - Method in class moa.classifiers.rules.core.Rule.Builder
 
owner - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
OzaBag - Class in moa.classifiers.meta
Incremental on-line bagging of Oza and Russell.
OzaBag() - Constructor for class moa.classifiers.meta.OzaBag
 
OzaBagAdwin - Class in moa.classifiers.meta
Bagging for evolving data streams using ADWIN.
OzaBagAdwin() - Constructor for class moa.classifiers.meta.OzaBagAdwin
 
OzaBagASHT - Class in moa.classifiers.meta
Bagging using trees of different size.
OzaBagASHT() - Constructor for class moa.classifiers.meta.OzaBagASHT
 
OzaBoost - Class in moa.classifiers.meta
Incremental on-line boosting of Oza and Russell.
OzaBoost() - Constructor for class moa.classifiers.meta.OzaBoost
 
OzaBoostAdwin - Class in moa.classifiers.meta
Boosting for evolving data streams using ADWIN.
OzaBoostAdwin() - Constructor for class moa.classifiers.meta.OzaBoostAdwin
 

P

p - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
Reference to original point
pack(byte[]) - Static method in class moa.clusterers.streamkm.MTRandom
This simply utility method can be used in cases where a byte array of seed data is to be used to repeatedly re-seed the random number sequence.
pageHinckleyAlphaOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
PageHinckleyAlphaOption - Variable in class moa.classifiers.trees.FIMTDD
 
PageHinckleyAlphaOption - Variable in class moa.classifiers.trees.ORTO
 
pageHinckleyTest - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
PageHinckleyTest(double, double) - Method in class moa.classifiers.trees.FIMTDD.Node
Check to see if the tree needs updating
PageHinckleyTest(double, double) - Method in class moa.classifiers.trees.ORTO.InnerNode
Check to see if the tree needs updating
pageHinckleyThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
PageHinckleyThresholdOption - Variable in class moa.classifiers.trees.FIMTDD
 
PageHinckleyThresholdOption - Variable in class moa.classifiers.trees.ORTO
 
PageHinkleyDM - Class in moa.classifiers.core.driftdetection
Drift detection method based in Page Hinkley Test.
PageHinkleyDM() - Constructor for class moa.classifiers.core.driftdetection.PageHinkleyDM
 
PageHinkleyFading - Class in moa.classifiers.rules.driftdetection
 
PageHinkleyFading(double, double) - Constructor for class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
PageHinkleyTest - Class in moa.classifiers.rules.driftdetection
 
PageHinkleyTest(double, double) - Constructor for class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
paint(Graphics) - Method in class moa.gui.LineGraphViewPanel.PlotPanel
 
paintComponent(Graphics) - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
 
paintComponent(Graphics) - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
 
paintComponent(Graphics) - Method in class moa.gui.visualization.ClusterPanel
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphAxes
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphCanvas
 
paintComponent(Graphics) - Method in class moa.gui.visualization.GraphCurve
 
paintComponent(Graphics) - Method in class moa.gui.visualization.OutlierPanel
 
paintComponent(Graphics) - Method in class moa.gui.visualization.PointPanel
 
paintValue(Graphics, Rectangle) - Method in class weka.gui.MOAClassOptionEditor
Paints a representation of the current Object.
Pair<T> - Class in moa.clusterers.outliers.utils.mtree.utils
A pair of objects of the same type.
Pair() - Constructor for class moa.clusterers.outliers.utils.mtree.utils.Pair
Creates a pair of null objects.
Pair(T, T) - Constructor for class moa.clusterers.outliers.utils.mtree.utils.Pair
Creates a pair with the objects specified in the arguments.
Pair<T extends Comparable<T>,U extends Comparable<U>> - Class in moa.recommender.rc.utils
 
Pair(T, U) - Constructor for class moa.recommender.rc.utils.Pair
 
panel_size - Variable in class moa.gui.visualization.ClusterPanel
 
panel_size - Variable in class moa.gui.visualization.OutlierPanel
 
panel_size - Variable in class moa.gui.visualization.PointPanel
 
parameterOption - Variable in class moa.clusterers.WekaClusteringAlgorithm
 
parent - Variable in class moa.classifiers.trees.FIMTDD.Node
 
parent - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
parent - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
parent - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
 
parent - Variable in class moa.classifiers.trees.ORTO.Node
 
parentBranch - Variable in class moa.classifiers.trees.HoeffdingOptionTree.FoundNode
 
parentBranch - Variable in class moa.classifiers.trees.HoeffdingTree.FoundNode
 
partition(Instances, int[], int, int, int) - Static method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Partitions the instances around a pivot.
partition(int, int[], int, int) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Partitions the instances around a pivot.
partition(double[], double[], int, int) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Partitions the instances around a pivot.
PartitionFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
An object with partitions a set of data into two sub-sets.
PartitionFunctions - Class in moa.clusterers.outliers.utils.mtree
Some pre-defined implementations of partition functions.
PartitionFunctions.BalancedPartition<DATA> - Class in moa.clusterers.outliers.utils.mtree
A partition function that tries to distribute the data objects equally between the promoted data objects, associating to each promoted data objects the nearest data objects.
PartitionFunctions.BalancedPartition() - Constructor for class moa.clusterers.outliers.utils.mtree.PartitionFunctions.BalancedPartition
 
partitions - Variable in class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
A pair of partitions corresponding to the promoted data objects.
pause() - Static method in class moa.gui.visualization.RunOutlierVisualizer
 
pause() - Static method in class moa.gui.visualization.RunVisualizer
 
pauseFlag - Variable in class moa.tasks.StandardTaskMonitor
 
pauseSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
pauseSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
pauseTask() - Method in class moa.tasks.TaskThread
 
pauseTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
pauseTaskButton - Variable in class moa.gui.TaskManagerPanel
 
peek() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
peeks at the first element.
penaltyFactorOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
Perceptron - Class in moa.classifiers.functions
Single perceptron classifier.
Perceptron() - Constructor for class moa.classifiers.functions.Perceptron
 
perceptron - Variable in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
Perceptron - Class in moa.classifiers.rules.functions
 
Perceptron() - Constructor for class moa.classifiers.rules.functions.Perceptron
 
Perceptron(Perceptron) - Constructor for class moa.classifiers.rules.functions.Perceptron
 
perceptronattributeStatistics - Variable in class moa.classifiers.rules.functions.Perceptron
 
perceptronInstancesSeen - Variable in class moa.classifiers.rules.functions.Perceptron
 
perceptronsumY - Variable in class moa.classifiers.rules.functions.Perceptron
 
perceptronYSeen - Variable in class moa.classifiers.rules.functions.Perceptron
 
period - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
perturbValue(double, double, double) - Method in class moa.streams.generators.AgrawalGenerator
 
perturbValue(double, double, double, double) - Method in class moa.streams.generators.AgrawalGenerator
 
peturbFractionOption - Variable in class moa.streams.generators.AgrawalGenerator
 
phinstancesSeen - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
PHmin - Variable in class moa.classifiers.trees.FIMTDD.Node
 
PHmT - Variable in class moa.classifiers.rules.RuleClassification
 
PHMT - Variable in class moa.classifiers.rules.RuleClassification
 
PHmT - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
PHMT - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
PHmT - Variable in class moa.classifiers.trees.ORTO.InnerNode
 
PHMT - Variable in class moa.classifiers.trees.ORTO.InnerNode
 
PHsum - Variable in class moa.classifiers.trees.FIMTDD.Node
 
pID - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
point ID
pineg - Variable in class moa.classifiers.meta.OCBoost
 
pipos - Variable in class moa.classifiers.meta.OCBoost
 
Plot - Class in moa.tasks
A task allowing to create and plot gnuplot scripts.
Plot() - Constructor for class moa.tasks.Plot
 
Plot.LegendLocation - Enum in moa.tasks
Location of the legend on the plot.
Plot.LegendType - Enum in moa.tasks
Type of legend.
Plot.PlotStyle - Enum in moa.tasks
 
Plot.Terminal - Enum in moa.tasks
Plot output terminal.
plotLines - Variable in class moa.gui.LineGraphViewPanel
 
plotOutputOption - Variable in class moa.tasks.Plot
FileOption for selecting the plot output file.
plotStyleOption - Variable in class moa.tasks.Plot
Type of plot - dots, points, lines ets.
PminOption - Variable in class moa.classifiers.rules.RuleClassifier
 
Point - Class in moa.clusterers.streamkm
 
Point(int) - Constructor for class moa.clusterers.streamkm.Point
 
Point(Instance, int) - Constructor for class moa.clusterers.streamkm.Point
 
pointIntervalOption - Variable in class moa.tasks.Plot
Interval between plotted data points.
PointPanel - Class in moa.gui.visualization
 
PointPanel(DataPoint, StreamPanel, double, double) - Constructor for class moa.gui.visualization.PointPanel
Type 1: Possibly be decayed, colored by class label.
PointPanel(DataPoint, StreamPanel, Color) - Constructor for class moa.gui.visualization.PointPanel
Type 2: Never be decayed, single color.
poisson(double, Random) - Static method in class moa.core.MiscUtils
 
pOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
positionOffsetOption - Variable in class moa.clusterers.ClusterGenerator
 
positionOption - Variable in class moa.streams.ConceptDriftRealStream
 
positionOption - Variable in class moa.streams.ConceptDriftStream
 
postProcessDistances(double[]) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Does post processing of the distances (if necessary) returned by distance(distance(Instance first, Instance second, double cutOffValue).
postProcessDistances(double[]) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Does post processing of the distances (if necessary) returned by distance(distance(Instance first, Instance second, double cutOffValue).
postProcessDistances(double[]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Does nothing, derived classes may override it though.
posWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
posWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
preciseThreadTimesAvailable - Static variable in class moa.core.TimingUtils
 
Predicate - Interface in moa.classifiers.rules.core
 
Predicates - Class in moa.classifiers.rules
 
Predicates(double, double, double) - Constructor for class moa.classifiers.rules.Predicates
 
predicateSet - Variable in class moa.classifiers.rules.RuleClassification
 
prediction(Instance, int) - Method in class moa.classifiers.functions.Perceptron
 
prediction(double[][], int) - Method in class moa.classifiers.meta.LimAttClassifier
 
prediction(double[]) - Method in class moa.classifiers.rules.functions.Perceptron
 
prediction(DoubleVector) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
Output the prediction made by this perceptron on the given instance
prediction(Instance) - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
Output the prediction made by this perceptron on the given instance
predictionFunction - Variable in class moa.classifiers.rules.core.Rule.Builder
 
predictionFunction(int) - Method in class moa.classifiers.rules.core.Rule.Builder
 
predictionFunction - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
predictionFunctionOption - Variable in class moa.classifiers.rules.AMRulesRegressor
 
predictionFunctionOption - Variable in class moa.classifiers.rules.RuleClassifier
 
predictionOption - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
predictionPruning(double[][], int[], int) - Method in class moa.classifiers.meta.LimAttClassifier
 
predictRating(Integer, Integer) - Method in class moa.recommender.predictor.BaselinePredictor
 
predictRating(int, int) - Method in class moa.recommender.predictor.BaselinePredictor
 
predictRating(Integer, Integer) - Method in class moa.recommender.predictor.BRISMFPredictor
 
predictRating(int, int) - Method in class moa.recommender.predictor.BRISMFPredictor
 
predictRating(int, int) - Method in interface moa.recommender.predictor.RatingPredictor
 
predictRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
predictRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
predictRating(float[], float[]) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
predictRating(int, int) - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.predictor.BaselinePredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.predictor.BRISMFPredictor
 
predictRatings(int, List<Integer>) - Method in interface moa.recommender.predictor.RatingPredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
predictRatings(int, List<Integer>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
predictRatings(int, List<Integer>) - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
preds - Variable in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
prepareClassOptions(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
Prepares the options of this class.
prepareForUse() - Method in class moa.options.AbstractOptionHandler
 
prepareForUse(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
 
prepareForUse() - Method in interface moa.options.OptionHandler
This method prepares this object for use.
prepareForUse(TaskMonitor, ObjectRepository) - Method in interface moa.options.OptionHandler
This method prepares this object for use.
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.AbstractClassifier
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.CusumDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.DDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EDDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.GiniSplitCriterion
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.InfoGainSplitCriterion
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.clusterers.AbstractClusterer
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.options.AbstractOptionHandler
This method describes the implementation of how to prepare this object for use.
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.data.MemRecommenderData
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.JesterDataset
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.dataset.impl.MovielensDataset
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.predictor.BaselinePredictor
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.recommender.predictor.BRISMFPredictor
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ArffFileStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.clustering.FileStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ConceptDriftRealStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.ConceptDriftStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.FilteredStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.filters.AbstractStreamFilter
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.AgrawalGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.HyperplaneGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.LEDGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.LEDGeneratorDrift
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.RandomRBFGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.RandomTreeGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.SEAGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.STAGGERGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.WaveformGenerator
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.generators.WaveformGeneratorDrift
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.streams.MultiFilteredStream
 
prepareForUseImpl(TaskMonitor, ObjectRepository) - Method in class moa.tasks.AbstractTask
 
previewedThread - Variable in class moa.gui.PreviewPanel
 
previewLabel - Variable in class moa.gui.PreviewPanel
 
previewPanel - Variable in class moa.gui.ClassificationTabPanel
 
previewPanel - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
previewPanel - Variable in class moa.gui.ConceptDriftTabPanel
 
PreviewPanel - Class in moa.gui
This panel displays the running task preview text and buttons.
PreviewPanel() - Constructor for class moa.gui.PreviewPanel
 
PreviewPanel(PreviewPanel.TypePanel) - Constructor for class moa.gui.PreviewPanel
 
PreviewPanel(PreviewPanel.TypePanel, CDTaskManagerPanel) - Constructor for class moa.gui.PreviewPanel
 
previewPanel - Variable in class moa.gui.RegressionTabPanel
 
previewPanel - Variable in class moa.gui.RegressionTaskManagerPanel
 
previewPanel - Variable in class moa.gui.TaskLauncher
 
previewPanel - Variable in class moa.gui.TaskManagerPanel
 
PreviewPanel.TypePanel - Enum in moa.gui
 
previousWeight - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
previousWeight - Variable in class moa.classifiers.trees.ORTO.InnerNode
 
Print(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
print(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
 
print(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
Print_lt_cnt(ArrayList<Integer>) - Method in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
printAnomaliesSupervised(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
printAnomaliesUnsupervised(StringBuilder, int) - Method in class moa.classifiers.rules.RuleClassifier
 
PrintEventQueue() - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintEventQueue() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
Printf(String, Object...) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
printf(String, Object...) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
 
printf(String, Object...) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
PrintInstance(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
PrintISB() - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
printList() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Prints out the contents of the neighborlist.
Println(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
println(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.PrintMsg
 
println(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
PrintMCSet(Set<MicroCluster>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintNodeList(List<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintNodeList(List<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
PrintNodeSet(Set<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintNodeSet(Set<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
PrintNodeVector(Vector<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintNodeVector(Vector<ISBIndex.ISBNode>) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
PrintOutliers() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
PrintPD() - Method in class moa.clusterers.outliers.MCOD.MCODBase
 
PrintPrecNeighs() - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM.ISBNodeExact
 
printRule() - Method in class moa.classifiers.rules.core.Rule
 
PrintRuleSet() - Method in class moa.classifiers.rules.AbstractAMRules
 
priors - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
priors_norm - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
prob - Variable in class moa.classifiers.lazy.kNNwithPAW
 
prob - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
probabilityDensity(double) - Method in class moa.core.GaussianEstimator
 
probabilityOfAttributeValueGivenClass(double, int) - Method in interface moa.classifiers.core.attributeclassobservers.AttributeClassObserver
Gets the probability for an attribute value given a class
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.GaussianNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.GreenwaldKhannaNumericAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
probabilityOfAttributeValueGivenClass(double, int) - Method in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
probabilityThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.ComposedSplitFunction
 
process(Pair<DATA>, Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.PartitionFunction
Executes the partitioning.
process(Pair<DATA>, Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.PartitionFunctions.BalancedPartition
Processes the balanced partition.
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.PromotionFunction
Chooses (promotes) a pair of objects according to some criteria that is suitable for the application using the M-Tree.
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in class moa.clusterers.outliers.utils.mtree.PromotionFunctions.RandomPromotion
 
process(Set<DATA>, DistanceFunction<? super DATA>) - Method in interface moa.clusterers.outliers.utils.mtree.SplitFunction
Processes the splitting of a node.
processChunk() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Processes a chunk of instances.
processChunk() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Processes a chunk.
processedInstances - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
Number of processed examples.
processedInstances - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
processedInstances - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Number of processed examples.
processingSpeed - Variable in class moa.clusterers.denstream.WithDBSCAN
 
processInstance(Instance, FIMTDD.Node, double, double, boolean, boolean) - Method in class moa.classifiers.trees.FIMTDD
 
processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.Node
 
processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.OptionNode
 
processInstance(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.SplitNode
 
processNewInstanceImpl(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.AbstractC.AbstractC
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.MCOD.MCOD
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
ProcessNewStreamObj(Instance) - Method in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
progressAnimSequence - Static variable in class moa.DoTask
Array of characters to use to animate the progress of tasks running.
promoted - Variable in class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
A pair of promoted data objects.
PromotionFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
An object that chooses a pair from a set of data objects.
PromotionFunctions - Class in moa.clusterers.outliers.utils.mtree
Some pre-defined implementations of promotion functions.
PromotionFunctions.RandomPromotion<DATA> - Class in moa.clusterers.outliers.utils.mtree
A promotion function object that randomly chooses ("promotes") two data objects.
PromotionFunctions.RandomPromotion() - Constructor for class moa.clusterers.outliers.utils.mtree.PromotionFunctions.RandomPromotion
 
PROPERTIES - Static variable in class moa.gui.GUIDefaults
Properties associated with the GUI options.
PropertiesReader - Class in moa.core
Class implementing some properties reader utility methods.
PropertiesReader() - Constructor for class moa.core.PropertiesReader
 
PROPERTY_FILE - Static variable in class moa.gui.GUIDefaults
The name of the properties file.
prunedAlternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
pruneOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
pruneOption - Variable in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
pruneToK(int) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.NeighborList
Prunes the list to contain the k nearest neighbors.
pureBoostOption - Variable in class moa.classifiers.meta.OzaBoost
 
pureBoostOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
purpose - Variable in class moa.options.AbstractOption
Text of the purpose of this option.
put(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
adds the value to the heap.
putBySubstitute(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
Puts an element by substituting it in place of the top most element.
putKthNearest(int, double) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
Stores kth nearest elements (if there are more than one).

Q

queryFreqOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
queryFreqOption - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
quickSort(Instances, int[], int, int, int) - Static method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Sorts the instances according to the given attribute/dimension.
quickSort(double[], double[], int, int) - Static method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
performs quicksort.

R

R_MAX - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Index in ranges for MAX.
R_MIN - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Index in ranges for MIN.
R_WIDTH - Static variable in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Index in ranges for WIDTH.
radius() - Method in class moa.cluster.Miniball
Return the Radius of the miniball
radiusDecreaseOption - Variable in class moa.clusterers.ClusterGenerator
 
radiusFactor - Variable in class moa.cluster.CFCluster
 
radiusIncreaseOption - Variable in class moa.clusterers.ClusterGenerator
 
radiusOption - Variable in class moa.clusterers.outliers.AbstractC.AbstractC
 
radiusOption - Variable in class moa.clusterers.outliers.Angiulli.ApproxSTORM
 
radiusOption - Variable in class moa.clusterers.outliers.Angiulli.ExactSTORM
 
radiusOption - Variable in class moa.clusterers.outliers.MCOD.MCOD
 
radiusOption - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
random - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
random - Variable in class moa.streams.ConceptDriftRealStream
 
random - Variable in class moa.streams.ConceptDriftStream
 
random - Variable in class moa.streams.filters.AddNoiseFilter
 
RandomHoeffdingTree - Class in moa.classifiers.trees
Random decision trees for data streams.
RandomHoeffdingTree() - Constructor for class moa.classifiers.trees.RandomHoeffdingTree
 
RandomHoeffdingTree.LearningNodeNB - Class in moa.classifiers.trees
 
RandomHoeffdingTree.LearningNodeNB(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNB
 
RandomHoeffdingTree.LearningNodeNBAdaptive - Class in moa.classifiers.trees
 
RandomHoeffdingTree.LearningNodeNBAdaptive(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.LearningNodeNBAdaptive
 
RandomHoeffdingTree.RandomLearningNode - Class in moa.classifiers.trees
 
RandomHoeffdingTree.RandomLearningNode(double[]) - Constructor for class moa.classifiers.trees.RandomHoeffdingTree.RandomLearningNode
 
RandomRBFGenerator - Class in moa.streams.generators
Stream generator for a random radial basis function stream.
RandomRBFGenerator() - Constructor for class moa.streams.generators.RandomRBFGenerator
 
RandomRBFGenerator.Centroid - Class in moa.streams.generators
 
RandomRBFGenerator.Centroid() - Constructor for class moa.streams.generators.RandomRBFGenerator.Centroid
 
RandomRBFGeneratorDrift - Class in moa.streams.generators
Stream generator for a random radial basis function stream with drift.
RandomRBFGeneratorDrift() - Constructor for class moa.streams.generators.RandomRBFGeneratorDrift
 
RandomRBFGeneratorEvents - Class in moa.streams.clustering
 
RandomRBFGeneratorEvents() - Constructor for class moa.streams.clustering.RandomRBFGeneratorEvents
 
RandomRules - Class in moa.classifiers.meta
 
RandomRules() - Constructor for class moa.classifiers.meta.RandomRules
 
randomSample(Collection<T>, int) - Static method in class moa.clusterers.outliers.utils.mtree.utils.Utils
Randomly chooses elements from the collection.
randomSeed - Variable in class moa.classifiers.AbstractClassifier
Random seed used in randomizable learners
randomSeed - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaLearningNode
 
randomSeed - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree.AdaSplitNode
 
randomSeed - Variable in class moa.clusterers.AbstractClusterer
 
randomSeedOption - Variable in class moa.classifiers.AbstractClassifier
Option for randomizable learners to change the random seed
randomSeedOption - Variable in class moa.clusterers.AbstractClusterer
 
randomSeedOption - Variable in class moa.clusterers.CobWeb
 
randomSeedOption - Variable in class moa.clusterers.streamkm.StreamKM
 
randomSeedOption - Variable in class moa.streams.ConceptDriftRealStream
 
randomSeedOption - Variable in class moa.streams.ConceptDriftStream
 
randomSeedOption - Variable in class moa.streams.filters.AddNoiseFilter
 
randomSeedOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
RandomTreeGenerator - Class in moa.streams.generators
Stream generator for a stream based on a randomly generated tree..
RandomTreeGenerator() - Constructor for class moa.streams.generators.RandomTreeGenerator
 
RandomTreeGenerator.Node - Class in moa.streams.generators
 
RandomTreeGenerator.Node() - Constructor for class moa.streams.generators.RandomTreeGenerator.Node
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
 
RangeSearch(ISBIndex.ISBNode, double) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
rangesSet() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Check if ranges are set.
Rating - Class in moa.recommender.rc.utils
 
Rating(int, int, double) - Constructor for class moa.recommender.rc.utils.Rating
 
rating - Variable in class moa.recommender.rc.utils.Rating
 
ratingIterator() - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
ratingIterator() - Method in interface moa.recommender.rc.data.RecommenderData
 
RatingPredictor - Interface in moa.recommender.predictor
Rating predicting algorithm.
RatingPredictor - Interface in moa.recommender.rc.predictor
 
ratingPredictorOption - Variable in class moa.tasks.EvaluateOnlineRecommender
 
ratingsItem - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
ratingsUser - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
read() - Method in class moa.core.InputStreamProgressMonitor
 
read(byte[]) - Method in class moa.core.InputStreamProgressMonitor
 
read(byte[], int, int) - Method in class moa.core.InputStreamProgressMonitor
 
readFromFile(File) - Static method in class moa.core.SerializeUtils
 
readInstance(Reader) - Method in class moa.core.InstancesHeader
 
readMinMaxDiffValues(HashSet<Integer>) - Method in class moa.streams.clustering.FileStream
 
readNextInstanceFromFile() - Method in class moa.streams.ArffFileStream
 
readNextInstanceFromFile() - Method in class moa.streams.clustering.FileStream
 
readProperties(String) - Static method in class moa.core.PropertiesReader
Reads properties that inherit from three locations.
rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Re-arranges the indices array so that in the portion of the array belonging to the node to be split, the points <= to the splitVal are on the left of the portion and those > the splitVal are on the right.
rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
Re-arranges the indices array such that the points <= to the splitVal are on the left of the array and those > the splitVal are on the right.
rearrangePoints(int[], int, int, int, double) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
Re-arranges the indices array such that the points <= to the splitVal are on the left of the array and those > the splitVal are on the right.
recalculateData() - Method in class moa.clusterers.clustree.Entry
This functions reads every entry in the child node and calculates the corresponding data Kernel.
recentChunk - Variable in class moa.classifiers.meta.ADACC
Last chunk of data of size (tau_size) to compute the stability index
RecommenderData - Interface in moa.recommender.data
 
RecommenderData - Interface in moa.recommender.rc.data
 
RedirectToDisplay() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
RedirectToFile(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
RedirectToFile() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector.StdPrintMsg
 
redraw() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
redraw() - Method in class moa.gui.visualization.RunVisualizer
 
redrawOnResize() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
RedrawPointLayer() - Method in class moa.gui.visualization.StreamOutlierPanel
 
refineOwners(KDTreeNode, Instances, int[]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Refines the ownerlist.
refresh() - Method in class moa.gui.PreviewPanel
 
refreshButton - Variable in class moa.gui.PreviewPanel
 
RegressionAccuracy - Class in moa.evaluation
 
RegressionAccuracy() - Constructor for class moa.evaluation.RegressionAccuracy
 
RegressionMainTask - Class in moa.tasks
 
RegressionMainTask() - Constructor for class moa.tasks.RegressionMainTask
 
RegressionPerformanceEvaluator - Interface in moa.evaluation
Interface implemented by learner evaluators to monitor the results of the regression learning process.
RegressionTabPanel - Class in moa.gui
This panel allows the user to select and configure a task, and run it.
RegressionTabPanel() - Constructor for class moa.gui.RegressionTabPanel
 
RegressionTaskManagerPanel - Class in moa.gui
This panel displays the running tasks.
RegressionTaskManagerPanel() - Constructor for class moa.gui.RegressionTaskManagerPanel
 
RegressionTaskManagerPanel.ProgressCellRenderer - Class in moa.gui
 
RegressionTaskManagerPanel.ProgressCellRenderer() - Constructor for class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
RegressionTaskManagerPanel.TaskTableModel - Class in moa.gui
 
RegressionTaskManagerPanel.TaskTableModel() - Constructor for class moa.gui.RegressionTaskManagerPanel.TaskTableModel
 
regressionTreeOption - Variable in class moa.classifiers.trees.FIMTDD
 
Regressor - Interface in moa.classifiers
Regressor interface for incremental regression models.
remove(int) - Method in class moa.cluster.Clustering
remove a cluster from the clustering
remove(CFCluster) - Method in class moa.clusterers.macro.NonConvexCluster
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.AbstractC.ISBIndex
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.ISBIndex
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex
 
Remove(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex
 
remove(DATA) - Method in class moa.clusterers.outliers.utils.mtree.MTree
Removes a data object from the M-Tree.
remove(int) - Method in class moa.core.AutoExpandVector
 
remove(Object) - Method in class moa.core.AutoExpandVector
 
remove() - Method in class moa.recommender.rc.data.impl.MemRecommenderData.RatingIterator
 
remove() - Method in class moa.recommender.rc.utils.DenseVector.DenseVectorIterator
 
remove(int) - Method in class moa.recommender.rc.utils.DenseVector
 
remove(int) - Method in class moa.recommender.rc.utils.SparseVector
 
remove() - Method in class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
remove(int) - Method in class moa.recommender.rc.utils.Vector
 
removeAllOptions() - Method in class moa.options.Options
 
removeAttributesOption - Variable in class moa.streams.clustering.FileStream
 
removeBadSplits(SplitCriterion, double, double, double) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
A method to remove all nodes in the E-BST in which it and all it's children represent 'bad' split points
removeChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionEditComponent
Removes the listener from the internal set of listeners.
removeChangeListener(ChangeListener) - Method in class moa.gui.ClassOptionWithNamesEditComponent
Removes the listener from the internal set of listeners.
removeClusterChangeListener(ClusterEventListener) - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
Remove a listener
removeExcessTrees() - Method in class moa.classifiers.trees.ORTO
 
RemoveExpiredOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
removeItem(int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
removeItem(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
removeItem(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
RemoveNode(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.MicroCluster
 
removeObject(int) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
removeOption(String) - Method in class moa.options.Options
 
removeOption(Option) - Method in class moa.options.Options
 
RemoveOutlier(MyBaseOutlierDetector.Outlier) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
removePoorAttsOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
removePoorAttsOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
removePoorAttsOption - Variable in class moa.classifiers.trees.ORTO
 
removePoorestModelBytes() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
Removes the poorest classifier from the model, thus decreasing the models size.
removePoorestModelBytes() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
RemovePrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
RemovePrecNeigh(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.SimpleCOD.ISBIndex.ISBNode
 
removeRange(int, int) - Method in class moa.core.AutoExpandVector
 
removeRating(int, int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
removeRating(int, int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
removeRating(int, int) - Method in interface moa.recommender.rc.data.RecommenderData
 
removeTaskCompletionListener(TaskCompletionListener) - Method in class moa.tasks.TaskThread
 
removeUser(int) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
removeUser(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
removeUser(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
renderAlgoPanel() - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
renderAlgoPanel() - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
renderAWTBox(Graphics, int, int, int, int) - Method in interface moa.gui.AWTRenderer
 
repaint() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
repaint() - Method in class moa.gui.outliertab.OutlierVisualTab
 
repaintOutliers() - Method in class moa.gui.visualization.StreamOutlierPanel
 
ReplacingMissingValuesFilter - Class in moa.streams.filters
Replaces the missing values with another value according to the selected strategy.
ReplacingMissingValuesFilter() - Constructor for class moa.streams.filters.ReplacingMissingValuesFilter
 
ReplacingMissingValuesFilter.MapUtil - Class in moa.streams.filters
 
ReplacingMissingValuesFilter.MapUtil() - Constructor for class moa.streams.filters.ReplacingMissingValuesFilter.MapUtil
 
repository - Variable in class moa.tasks.TaskThread
 
requestCancel() - Method in class moa.tasks.NullMonitor
 
requestCancel() - Method in class moa.tasks.StandardTaskMonitor
 
requestCancel() - Method in interface moa.tasks.TaskMonitor
Requests the task monitored to cancel.
requestPause() - Method in class moa.tasks.NullMonitor
 
requestPause() - Method in class moa.tasks.StandardTaskMonitor
 
requestPause() - Method in interface moa.tasks.TaskMonitor
Requests the task monitored to pause.
requestResultPreview() - Method in class moa.tasks.NullMonitor
 
requestResultPreview(ResultPreviewListener) - Method in class moa.tasks.NullMonitor
 
requestResultPreview() - Method in class moa.tasks.StandardTaskMonitor
 
requestResultPreview(ResultPreviewListener) - Method in class moa.tasks.StandardTaskMonitor
 
requestResultPreview() - Method in interface moa.tasks.TaskMonitor
Requests to preview the task result.
requestResultPreview(ResultPreviewListener) - Method in interface moa.tasks.TaskMonitor
Requests to preview the task result.
requestResume() - Method in class moa.tasks.NullMonitor
 
requestResume() - Method in class moa.tasks.StandardTaskMonitor
 
requestResume() - Method in interface moa.tasks.TaskMonitor
Requests the task monitored to resume.
RequiredOptionNotSpecifiedException - Exception in moa.options
 
RequiredOptionNotSpecifiedException() - Constructor for exception moa.options.RequiredOptionNotSpecifiedException
 
requiredType - Variable in class moa.options.AbstractClassOption
The class type
reset - Variable in class moa.classifiers.bayes.NaiveBayesMultinomial
 
reset - Variable in class moa.classifiers.functions.Perceptron
 
reset() - Method in class moa.classifiers.functions.SGD
Reset the classifier.
reset() - Method in class moa.classifiers.functions.SGDMultiClass
Reset the classifier.
reset() - Method in class moa.classifiers.functions.SPegasos
Reset the classifier.
reset() - Method in class moa.classifiers.meta.LimAttClassifier.CombinationGenerator
 
reset - Variable in class moa.classifiers.meta.LimAttClassifier
 
reset() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
reset() - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
reset() - Method in class moa.classifiers.rules.functions.Perceptron
 
reset(double, long) - Method in class moa.classifiers.rules.functions.TargetMean
 
reset - Variable in class moa.classifiers.rules.RuleClassification
 
reset - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
reset - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
reset() - Method in class moa.core.InputStreamProgressMonitor
 
reset() - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
reset() - Method in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
reset() - Method in interface moa.evaluation.ClassificationPerformanceEvaluator
Resets this evaluator.
reset() - Method in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
reset() - Method in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
reset() - Method in interface moa.evaluation.LearningPerformanceEvaluator
 
reset() - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.MultilabelWindowClassificationPerformanceEvaluator
 
reset() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
reset() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
reset(int) - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
reset() - Method in interface moa.recommender.dataset.Dataset
 
reset() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
reset() - Method in class moa.recommender.dataset.impl.JesterDataset
 
reset() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
resetButton - Variable in class moa.gui.OptionsConfigurationPanel
 
resetChange() - Method in class moa.classifiers.core.driftdetection.ADWIN
 
resetError() - Method in class moa.classifiers.rules.functions.Perceptron
 
resetError() - Method in class moa.classifiers.rules.functions.TargetMean
 
resetFF() - Method in class moa.classifiers.trees.ORTO.OptionNode
 
resetLearning() - Method in class moa.classifiers.AbstractClassifier
 
resetLearning() - Method in interface moa.classifiers.Classifier
Resets this classifier.
resetLearning() - Method in class moa.classifiers.core.driftdetection.AbstractChangeDetector
Resets this change detector.
resetLearning() - Method in class moa.classifiers.core.driftdetection.ADWINChangeDetector
 
resetLearning() - Method in interface moa.classifiers.core.driftdetection.ChangeDetector
Resets this change detector.
resetLearning() - Method in class moa.classifiers.core.driftdetection.CusumDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.DDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.EDDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.EnsembleDriftDetectionMethods
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.EWMAChartDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.GeometricMovingAverageDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.PageHinkleyDM
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
resetLearning() - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
resetLearning() - Method in class moa.clusterers.AbstractClusterer
 
resetLearning() - Method in interface moa.clusterers.Clusterer
 
resetLearning() - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
resetLearningImpl() - Method in class moa.classifiers.AbstractClassifier
Resets this classifier.
resetLearningImpl() - Method in class moa.classifiers.active.ActiveClassifier
 
resetLearningImpl() - Method in class moa.classifiers.bayes.NaiveBayes
 
resetLearningImpl() - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
resetLearningImpl() - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
resetLearningImpl() - Method in class moa.classifiers.functions.MajorityClass
 
resetLearningImpl() - Method in class moa.classifiers.functions.NoChange
 
resetLearningImpl() - Method in class moa.classifiers.functions.Perceptron
 
resetLearningImpl() - Method in class moa.classifiers.functions.SGD
 
resetLearningImpl() - Method in class moa.classifiers.functions.SGDMultiClass
 
resetLearningImpl() - Method in class moa.classifiers.functions.SPegasos
 
resetLearningImpl() - Method in class moa.classifiers.lazy.kNN
 
resetLearningImpl() - Method in class moa.classifiers.lazy.kNNwithPAW
 
resetLearningImpl() - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
resetLearningImpl() - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
resetLearningImpl() - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
resetLearningImpl() - Method in class moa.classifiers.meta.DACC
 
resetLearningImpl() - Method in class moa.classifiers.meta.LeveragingBag
 
resetLearningImpl() - Method in class moa.classifiers.meta.LimAttClassifier
 
resetLearningImpl() - Method in class moa.classifiers.meta.OCBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
resetLearningImpl() - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBag
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBagAdwin
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBagASHT
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBoost
 
resetLearningImpl() - Method in class moa.classifiers.meta.OzaBoostAdwin
 
resetLearningImpl() - Method in class moa.classifiers.meta.RandomRules
 
resetLearningImpl() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
resetLearningImpl() - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
resetLearningImpl() - Method in class moa.classifiers.meta.WEKAClassifier
 
resetLearningImpl() - Method in class moa.classifiers.multilabel.MajorityLabelset
 
resetLearningImpl() - Method in class moa.classifiers.multilabel.meta.MLOzaBag
 
resetLearningImpl() - Method in class moa.classifiers.rules.AbstractAMRules
 
resetLearningImpl() - Method in class moa.classifiers.rules.AMRulesRegressor
This method initializes and resets the algorithm.
resetLearningImpl() - Method in class moa.classifiers.rules.functions.FadingTargetMean
 
resetLearningImpl() - Method in class moa.classifiers.rules.functions.Perceptron
A method to reset the model
resetLearningImpl() - Method in class moa.classifiers.rules.functions.TargetMean
 
resetLearningImpl() - Method in class moa.classifiers.rules.RuleClassifier
 
resetLearningImpl() - Method in class moa.classifiers.trees.ASHoeffdingTree
 
resetLearningImpl() - Method in class moa.classifiers.trees.DecisionStump
 
resetLearningImpl() - Method in class moa.classifiers.trees.FIMTDD
 
resetLearningImpl() - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
resetLearningImpl() - Method in class moa.classifiers.trees.HoeffdingTree
 
resetLearningImpl() - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
A method to reset the model
resetLearningImpl() - Method in class moa.classifiers.trees.ORTO
 
resetLearningImpl() - Method in class moa.clusterers.AbstractClusterer
 
resetLearningImpl() - Method in class moa.clusterers.ClusterGenerator
 
resetLearningImpl() - Method in class moa.clusterers.clustream.Clustream
 
resetLearningImpl() - Method in class moa.clusterers.clustream.WithKmeans
 
resetLearningImpl() - Method in class moa.clusterers.clustree.ClusTree
 
resetLearningImpl() - Method in class moa.clusterers.CobWeb
 
resetLearningImpl() - Method in class moa.clusterers.denstream.WithDBSCAN
 
resetLearningImpl() - Method in class moa.clusterers.outliers.AnyOut.AnyOut
 
resetLearningImpl() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
resetLearningImpl() - Method in class moa.clusterers.streamkm.StreamKM
 
resetLearningImpl() - Method in class moa.clusterers.WekaClusteringAlgorithm
 
resetLearningImpl() - Method in class moa.learners.ChangeDetectorLearner
 
resetToDefault() - Method in class moa.options.AbstractOption
 
resetToDefault() - Method in interface moa.options.Option
Resets this option to the default value
resetToDefaults() - Method in class moa.gui.OptionsConfigurationPanel
 
resetToDefaults() - Method in class moa.options.Options
 
resetTree - Variable in class moa.classifiers.trees.ASHoeffdingTree
 
resetTreesOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
resizeTree(HoeffdingTree.Node, int) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
restart() - Method in class moa.streams.ArffFileStream
 
restart() - Method in class moa.streams.CachedInstancesStream
 
restart() - Method in class moa.streams.clustering.FileStream
 
restart() - Method in class moa.streams.clustering.RandomRBFGeneratorEvents
 
restart() - Method in class moa.streams.ConceptDriftRealStream
 
restart() - Method in class moa.streams.ConceptDriftStream
 
restart() - Method in class moa.streams.FilteredStream
 
restart() - Method in class moa.streams.filters.AbstractStreamFilter
 
restart() - Method in class moa.streams.generators.AgrawalGenerator
 
restart() - Method in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
restart() - Method in class moa.streams.generators.HyperplaneGenerator
 
restart() - Method in class moa.streams.generators.LEDGenerator
 
restart() - Method in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
restart() - Method in class moa.streams.generators.RandomRBFGenerator
 
restart() - Method in class moa.streams.generators.RandomTreeGenerator
 
restart() - Method in class moa.streams.generators.SEAGenerator
 
restart() - Method in class moa.streams.generators.STAGGERGenerator
 
restart() - Method in class moa.streams.generators.WaveformGenerator
 
restart() - Method in interface moa.streams.InstanceStream
Restarts this stream.
restart() - Method in class moa.streams.MultiFilteredStream
 
restartChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.Node
 
restartChangeDetection() - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
restartImpl() - Method in class moa.streams.filters.AbstractStreamFilter
Restarts this filter.
restartImpl() - Method in class moa.streams.filters.AddNoiseFilter
 
restartImpl() - Method in class moa.streams.filters.CacheFilter
 
restartImpl() - Method in class moa.streams.filters.ReplacingMissingValuesFilter
 
resultingClassDistributionFromSplit(int) - Method in class moa.classifiers.core.AttributeSplitSuggestion
 
resultingClassDistributions - Variable in class moa.classifiers.core.AttributeSplitSuggestion
 
resultKnownForInstance(Instance) - Method in class moa.classifiers.core.conditionaltests.InstanceConditionalTest
Gets whether the number of the branch for an instance is known.
resultPreviewer - Variable in class moa.tasks.StandardTaskMonitor
 
ResultPreviewListener - Interface in moa.tasks
Interface implemented by classes that preview results on the Graphical User Interface
resultPreviewRequested() - Method in class moa.tasks.NullMonitor
 
resultPreviewRequested - Variable in class moa.tasks.StandardTaskMonitor
 
resultPreviewRequested() - Method in class moa.tasks.StandardTaskMonitor
 
resultPreviewRequested() - Method in interface moa.tasks.TaskMonitor
Gets whether there is a request for preview the task result.
resume() - Static method in class moa.gui.visualization.RunOutlierVisualizer
 
resume() - Static method in class moa.gui.visualization.RunVisualizer
 
resumeSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
resumeSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
resumeTask() - Method in class moa.tasks.TaskThread
 
resumeTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
resumeTaskButton - Variable in class moa.gui.TaskManagerPanel
 
revalidate() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
revalidate() - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
rFactor - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
rFactorOption - Variable in class moa.recommender.predictor.BRISMFPredictor
 
right - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver.Node
 
right - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression.Node
 
right - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
rightStatistics - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver.Node
 
Rmc - Variable in class moa.clusterers.outliers.MCOD.ISBIndex.ISBNode
 
rnd - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
root - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
root - Variable in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
 
root - Variable in class moa.classifiers.rules.core.attributeclassobservers.FIMTDDNumericAttributeClassLimitObserver.Node
 
root - Variable in class moa.clusterers.clustree.ClusTree
The root node of the tree.
root - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
root1 - Variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
round(double) - Method in class moa.classifiers.rules.RuleClassifier
 
round(double) - Method in class moa.gui.TaskTextViewerPanel
 
rowKappa - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
rowKappa - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
rp - Variable in class moa.recommender.predictor.BaselinePredictor
 
rp - Variable in class moa.recommender.predictor.BRISMFPredictor
 
Rule - Class in moa.classifiers.rules.core
 
Rule(Rule.Builder) - Constructor for class moa.classifiers.rules.core.Rule
 
Rule.Builder - Class in moa.classifiers.rules.core
 
Rule.Builder() - Constructor for class moa.classifiers.rules.core.Rule.Builder
 
RuleActiveLearningNode - Class in moa.classifiers.rules.core
A modified ActiveLearningNode that uses a Perceptron as the leaf node model, and ensures that the class values sent to the attribute observers are not truncated to ints if regression is being performed
RuleActiveLearningNode(double[]) - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
Create a new RuleActiveLearningNode
RuleActiveLearningNode() - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
 
RuleActiveLearningNode(Rule.Builder) - Constructor for class moa.classifiers.rules.core.RuleActiveLearningNode
 
RuleActiveRegressionNode - Class in moa.classifiers.rules.core
A modified ActiveLearningNode that uses a Perceptron as the leaf node model, and ensures that the class values sent to the attribute observers are not truncated to ints if regression is being performed
RuleActiveRegressionNode(double[]) - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
 
RuleActiveRegressionNode() - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
 
RuleActiveRegressionNode(Rule.Builder) - Constructor for class moa.classifiers.rules.core.RuleActiveRegressionNode
 
ruleAnomaliesIndex - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleAnomaliesIndexSupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleAttribAnomalyStatistics - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleAttribAnomalyStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
RuleClassification - Class in moa.classifiers.rules
 
RuleClassification(RuleClassification) - Constructor for class moa.classifiers.rules.RuleClassification
 
RuleClassification() - Constructor for class moa.classifiers.rules.RuleClassification
 
RuleClassifier - Class in moa.classifiers.rules
This classifier learn ordered and unordered rule set from data stream.
RuleClassifier() - Constructor for class moa.classifiers.rules.RuleClassifier
 
RuleClassifierNBayes - Class in moa.classifiers.rules
This classifier learn ordered and unordered rule set from data stream with naive Bayes learners.
RuleClassifierNBayes() - Constructor for class moa.classifiers.rules.RuleClassifierNBayes
 
ruleClassIndex - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleEvaluate(Instance) - Method in class moa.classifiers.rules.RuleClassification
 
ruleNumberID - Variable in class moa.classifiers.rules.AbstractAMRules
 
ruleNumberID - Variable in class moa.classifiers.rules.core.Rule
 
ruleSet - Variable in class moa.classifiers.rules.AbstractAMRules
 
RuleSet - Class in moa.classifiers.rules.core
 
RuleSet() - Constructor for class moa.classifiers.rules.core.RuleSet
 
ruleSet - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleSetAnomalies - Variable in class moa.classifiers.rules.RuleClassifier
 
ruleSetAnomaliesSupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
RuleSplitNode - Class in moa.classifiers.rules.nodes
A modified SplitNode method implementing the extra information
RuleSplitNode(InstanceConditionalTest, double[]) - Constructor for class moa.classifiers.rules.nodes.RuleSplitNode
Create a new RuleSplitNode
run() - Method in class moa.gui.BatchCmd
 
run() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
run() - Method in class moa.gui.visualization.RunVisualizer
 
run() - Method in class moa.tasks.TaskThread
 
runBatch(ClusteringStream, AbstractClusterer, int, int, String) - Static method in class moa.gui.BatchCmd
 
runningTask - Variable in class moa.tasks.TaskThread
 
RunOutlierVisualizer - Class in moa.gui.visualization
 
RunOutlierVisualizer(OutlierVisualTab, OutlierSetupTab) - Constructor for class moa.gui.visualization.RunOutlierVisualizer
 
RunStreamTasks - Class in moa.tasks
Task for running several experiments modifying values of parameters.
RunStreamTasks() - Constructor for class moa.tasks.RunStreamTasks
 
runTask(Task) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.RegressionTaskManagerPanel
 
runTask(Task) - Method in class moa.gui.TaskManagerPanel
 
runTaskButton - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.RegressionTaskManagerPanel
 
runTaskButton - Variable in class moa.gui.TaskManagerPanel
 
RunTasks - Class in moa.tasks
Task for running several experiments modifying values of parameters.
RunTasks() - Constructor for class moa.tasks.RunTasks
 
runVisual() - Method in class moa.gui.visualization.RunVisualizer
 
RunVisualizer - Class in moa.gui.visualization
 
RunVisualizer(ClusteringVisualTab, ClusteringSetupTab) - Constructor for class moa.gui.visualization.RunVisualizer
 

S

sammeOption - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
sample(Random) - Method in class moa.cluster.Cluster
Samples this cluster by returning a point from inside it.
sample(Random) - Method in class moa.cluster.SphereCluster
Samples this cluster by returning a point from inside it.
sampleFrequencyOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluateConceptDrift
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Defines how often classifier parameters will be calculated.
sampleFrequencyOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluateOnlineRecommender
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequential
 
sampleFrequencyOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
saveBestEntropy - Variable in class moa.classifiers.rules.RuleClassifier
 
saveBestEntropyNominalAttrib - Variable in class moa.classifiers.rules.RuleClassifier
 
saveBestGlobalEntropy - Variable in class moa.classifiers.rules.RuleClassifier
 
saveBestValGlobalEntropy - Variable in class moa.classifiers.rules.RuleClassifier
 
saveLogSelectedTasks() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.RegressionTaskManagerPanel
 
saveLogSelectedTasks() - Method in class moa.gui.TaskManagerPanel
 
saveTheBest - Variable in class moa.classifiers.rules.RuleClassifier
 
scalarProduct(DoubleVector, DoubleVector) - Method in class moa.classifiers.trees.FIMTDD
 
scaleValues(double) - Method in class moa.core.DoubleVector
 
scaleXResolution(boolean) - Method in class moa.gui.visualization.GraphCanvas
 
scaleYResolution(boolean) - Method in class moa.gui.visualization.GraphCanvas
 
scms - Variable in class moa.classifiers.meta.OzaBoost
 
scms - Variable in class moa.classifiers.meta.OzaBoostAdwin
 
screenshot(String, boolean, boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
screenshot(String, boolean, boolean) - Method in class moa.gui.visualization.StreamPanel
 
scrollPane - Variable in class moa.gui.TaskTextViewerPanel
 
scrollPane - Variable in class moa.gui.TextViewerPanel
 
SDRSplitCriterion - Class in moa.classifiers.core.splitcriteria
 
SDRSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.SDRSplitCriterion
 
SDRSplitCriterionAMRules - Class in moa.classifiers.rules.core.splitcriteria
 
SDRSplitCriterionAMRules() - Constructor for class moa.classifiers.rules.core.splitcriteria.SDRSplitCriterionAMRules
 
SEAGenerator - Class in moa.streams.generators
Stream generator for SEA concepts functions.
SEAGenerator() - Constructor for class moa.streams.generators.SEAGenerator
 
SEAGenerator.ClassFunction - Interface in moa.streams.generators
 
searchForBestSplitOption(BinaryTreeNumericAttributeClassObserver.Node, AttributeSplitSuggestion, double[], double[], double[], boolean, SplitCriterion, double[], int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserver
 
searchForBestSplitOption(BinaryTreeNumericAttributeClassObserverRegression.Node, AttributeSplitSuggestion, double[], double[], double[], boolean, SplitCriterion, double[], int) - Method in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
searchForBestSplitOption(FIMTDDNumericAttributeClassObserver.Node, AttributeSplitSuggestion, SplitCriterion, int) - Method in class moa.classifiers.core.attributeclassobservers.FIMTDDNumericAttributeClassObserver
Implementation of the FindBestSplit algorithm from E.Ikonomovska et al.
second - Variable in class moa.clusterers.outliers.utils.mtree.utils.Pair
The second object.
secondarySplitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
secondLine - Variable in class moa.gui.TaskTextViewerPanel
 
secondsToDHMSString(double) - Static method in class moa.core.StringUtils
 
select(int, int[], int, int, int) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Implements computation of the kth-smallest element according to Manber's "Introduction to Algorithms".
SemiSupervisedLearner - Interface in moa.classifiers
Learner interface for incremental semi supervised models.
separatorChar - Variable in class moa.options.ListOption
 
seqdrift - Variable in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
seqDrift1 - Variable in class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
SeqDrift1ChangeDetector - Class in moa.classifiers.core.driftdetection
SeqDrift1ChangeDetector.java.
SeqDrift1ChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.SeqDrift1ChangeDetector
 
SeqDrift2ChangeDetector - Class in moa.classifiers.core.driftdetection
SeqDriftChangeDetector.java.
SeqDrift2ChangeDetector() - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector
 
SeqDrift2ChangeDetector.SeqDrift2 - Class in moa.classifiers.core.driftdetection
SeqDrift2 uses reservoir sampling to build a sequential change detection model that uses statistically sound guarantees defined using Bernstein Bound on false positive and false negative rates.
SeqDrift2ChangeDetector.SeqDrift2(double, int) - Constructor for class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
SeqDrift change detector requires two parameters: significance level and block size.
SerializeUtils - Class in moa.core
Class implementing some serialize utility methods.
SerializeUtils() - Constructor for class moa.core.SerializeUtils
 
SerializeUtils.ByteCountingOutputStream - Class in moa.core
 
SerializeUtils.ByteCountingOutputStream() - Constructor for class moa.core.SerializeUtils.ByteCountingOutputStream
 
serialVersionUID - Static variable in class moa.classifiers.core.attributeclassobservers.BinaryTreeNumericAttributeClassObserverRegression
 
serialVersionUID - Static variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
set(int, T) - Method in class moa.core.AutoExpandVector
 
set() - Method in class moa.options.FlagOption
 
set(int, double) - Method in class moa.recommender.rc.utils.DenseVector
 
set(int, double) - Method in class moa.recommender.rc.utils.SparseVector
 
set(int, double) - Method in class moa.recommender.rc.utils.Vector
 
setActiveXDim(int) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setActiveXDim(int) - Method in class moa.gui.visualization.StreamPanel
 
setActiveYDim(int) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setActiveYDim(int) - Method in class moa.gui.visualization.StreamPanel
 
setAcuity(double) - Method in class moa.clusterers.CobWeb
set the acuity.
setAdaptable(boolean) - Method in class moa.classifiers.trees.ORTO.InnerNode
 
setAdaptable(boolean) - Method in class moa.classifiers.trees.ORTO.Node
 
setAlgorithm0ValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setAlgorithm0ValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setAlgorithm1ValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setAlgorithm1ValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setAlternate(boolean) - Method in class moa.classifiers.trees.ORTO.InnerNode
 
setAlternate(boolean) - Method in class moa.classifiers.trees.ORTO.Node
 
setAlternateTree(ORTO.Node) - Method in class moa.classifiers.trees.ORTO.InnerNode
 
setArrayLength(int) - Method in class moa.core.DoubleVector
 
setAttributeIndices(String) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Sets the range of attributes to use in the calculation of the distance.
setAttributeIndices(String) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets the range of attributes to use in the calculation of the distance.
setAttributeValue(NumericAttributeBinaryRulePredicate) - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
setAttributeValue(double) - Method in class moa.classifiers.rules.Predicates
 
setBestSuggestion(AttributeSplitSuggestion) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setBuilder(Rule.Builder) - Method in class moa.classifiers.rules.core.Rule
 
setCenter(double[]) - Method in class moa.cluster.SphereCluster
 
setChild(int, FIMTDD.Node) - Method in class moa.classifiers.trees.FIMTDD.SplitNode
 
setChild(int, HoeffdingOptionTree.Node) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
setChild(int, HoeffdingTree.Node) - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
setChild(int, ORTO.Node) - Method in class moa.classifiers.trees.ORTO.InnerNode
 
setChild(int, ORTO.Node) - Method in class moa.classifiers.trees.ORTO.Node
 
setChild(int, ORTO.Node) - Method in class moa.classifiers.trees.ORTO.SplitNode
 
setChild(Node) - Method in class moa.clusterers.clustree.Entry
Setter for the child in this entry.
setChosenIndex(int) - Method in class moa.options.MultiChoiceOption
 
setChosenLabel(String) - Method in class moa.options.MultiChoiceOption
 
setClassifier(ClassOption) - Method in class weka.classifiers.meta.MOA
Sets the MOA classifier to use.
setClock(int) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setClustered() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
setClusterEventsList(ArrayList<ClusterEvent>) - Method in class moa.gui.visualization.GraphCanvas
 
setClusterIDs(Clustering) - Method in class moa.clusterers.macro.AbstractMacroClusterer
 
setClusteringSetupTab(ClusteringSetupTab) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setCurrentActivity(String, double) - Method in class moa.tasks.NullMonitor
 
setCurrentActivity(String, double) - Method in class moa.tasks.StandardTaskMonitor
 
setCurrentActivity(String, double) - Method in interface moa.tasks.TaskMonitor
Sets the description and the percentage done of the current activity.
setCurrentActivityDescription(String) - Method in class moa.tasks.NullMonitor
 
setCurrentActivityDescription(String) - Method in class moa.tasks.StandardTaskMonitor
 
setCurrentActivityDescription(String) - Method in interface moa.tasks.TaskMonitor
Sets the description of the current activity.
setCurrentActivityFractionComplete(double) - Method in class moa.tasks.NullMonitor
 
setCurrentActivityFractionComplete(double) - Method in class moa.tasks.StandardTaskMonitor
 
setCurrentActivityFractionComplete(double) - Method in interface moa.tasks.TaskMonitor
Sets the percentage done of the current activity
setCurrentObject(Object) - Method in class moa.options.AbstractClassOption
Sets current object.
setCutoff(double) - Method in class moa.clusterers.CobWeb
set the cutoff
setDimensionComobBoxes(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setDimensionComobBoxes(int) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setDirection(double[]) - Method in class moa.gui.visualization.ClusterPanel
 
setDirection(double[]) - Method in class moa.gui.visualization.OutlierPanel
 
setDistanceFunction(DistanceFunction) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
sets the distance function to use for nearest neighbour search.
setDistanceFunction(DistanceFunction) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
sets the distance function to use for nearest neighbour search.
setDontNormalize(boolean) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets whether if the attribute values are to be normalized in distance calculation.
setEditState(String) - Method in class moa.gui.ClassOptionEditComponent
 
setEditState(String) - Method in class moa.gui.ClassOptionWithNamesEditComponent
 
setEditState(String) - Method in class moa.gui.FileOptionEditComponent
 
setEditState(String) - Method in class moa.gui.FlagOptionEditComponent
 
setEditState(String) - Method in class moa.gui.FloatOptionEditComponent
 
setEditState(String) - Method in class moa.gui.IntOptionEditComponent
 
setEditState(String) - Method in class moa.gui.MultiChoiceOptionEditComponent
 
setEditState(String) - Method in interface moa.gui.OptionEditComponent
Sets the state of the component
setEditState(String) - Method in class moa.gui.StringOptionEditComponent
 
setEditState(String) - Method in class moa.gui.WEKAClassOptionEditComponent
 
setEnabled(int, boolean) - Method in class moa.evaluation.MeasureCollection
 
setEuclideanDistanceFunction(EuclideanDistance) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets the EuclideanDistance object to use for splitting nodes.
setEvents - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventQueue
 
setEvents - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.ConceptDriftMainTask
 
setEventsList(ArrayList<ClusterEvent>) - Method in class moa.tasks.RegressionMainTask
 
setExamplesSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.FIMTDD.LeafNode
 
setFirst(T) - Method in class moa.recommender.rc.utils.Pair
 
setGenerator(ClassOption) - Method in class weka.datagenerators.classifiers.classification.MOA
Sets the MOA stream generator to use.
setGraph(String) - Method in class moa.gui.TaskTextViewerPanel
 
setGraph(MeasureCollection, MeasureCollection, int, int) - Method in class moa.gui.visualization.GraphCanvas
 
setGraph(MeasureCollection, MeasureCollection, int) - Method in class moa.gui.visualization.GraphCurve
 
setGroundTruth(double) - Method in class moa.cluster.Cluster
 
setGroundTruthLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setGroundTruthVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setHighlightedClusterPanel(ClusterPanel) - Method in class moa.gui.visualization.StreamPanel
 
setHighlightedOutlierPanel(OutlierPanel) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setId(double) - Method in class moa.cluster.Cluster
 
setId(int) - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
 
setInput(double) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setInput(double, double) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setInput(double) - Method in class moa.classifiers.core.driftdetection.SeqDrift2ChangeDetector.SeqDrift2
This method can be used to directly interface with SeqDrift change detector.
setInputStream(InstanceStream) - Method in class moa.streams.filters.AbstractStreamFilter
 
setInputStream(InstanceStream) - Method in interface moa.streams.filters.StreamFilter
Sets the input stream to the filter
setInstanceList(int[]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets the master index array containing indices of the training instances.
setInstances(Instances) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Sets the instances.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Builds the KDTree on the given set of instances.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets the training instances on which the tree is (or is to be) built.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Sets the instances comprising the current neighbourhood.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Sets the instances.
setInstances(Instances) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets the instances.
setInstancesSeen(int) - Method in class moa.classifiers.rules.functions.Perceptron
 
setInvertSelection(boolean) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Sets whether the matching sense of attribute indices is inverted or not.
setInvertSelection(boolean) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Sets whether the matching sense of attribute indices is inverted or not.
setLambda(double) - Method in class moa.classifiers.functions.SGD
Set the value of lambda to use
setLambda(double) - Method in class moa.classifiers.functions.SGDMultiClass
Set the value of lambda to use
setLambda(double) - Method in class moa.classifiers.functions.SPegasos
Set the value of lambda to use
setLatestPreview(Object) - Method in class moa.gui.PreviewPanel
 
setLatestResultPreview(Object) - Method in class moa.tasks.NullMonitor
 
setLatestResultPreview(Object) - Method in class moa.tasks.StandardTaskMonitor
 
setLatestResultPreview(Object) - Method in interface moa.tasks.TaskMonitor
Sets the current result to preview
setLearningNode(RuleActiveLearningNode) - Method in class moa.classifiers.rules.core.Rule
 
setLearningRate(double) - Method in class moa.classifiers.functions.SGD
Set the learning rate.
setLearningRate(double) - Method in class moa.classifiers.functions.SGDMultiClass
Set the learning rate.
setLearningRatio(double) - Method in class moa.classifiers.rules.functions.Perceptron
 
setList(Option[]) - Method in class moa.options.ListOption
 
setlistAttributes(int[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
setlistAttributes(int[]) - Method in class moa.classifiers.trees.LimAttHoeffdingTree
 
setLossFunction(int) - Method in class moa.classifiers.functions.SGD
Set the loss function to use.
setLossFunction(int) - Method in class moa.classifiers.functions.SGDMultiClass
Set the loss function to use.
setLossFunction(int) - Method in class moa.classifiers.functions.SPegasos
Set the loss function to use.
setLRate(double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
setMacroLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setMacroVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setMaxInstInLeaf(int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the maximum number of instances in a leaf.
setMaxSize(int) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
setMaxXValue(int) - Method in class moa.gui.visualization.GraphAxes
 
setMC - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
setMeasurePerformance(boolean) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets whether to calculate the performance statistics or not.
setMeasures(MeasureCollection[], MeasureCollection[], ActionListener) - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
 
setMeasures(MeasureCollection[], ActionListener) - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
 
setMeasureValue(String, String) - Method in class moa.cluster.Cluster
 
setMeasureValue(String, double) - Method in class moa.cluster.Cluster
 
setMeasureValue(String, double) - Method in class moa.gui.visualization.DataPoint
 
setMeasureValue(String, String) - Method in class moa.gui.visualization.DataPoint
 
SetMessagePrinter(MyBaseOutlierDetector.PrintMsg) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setMicroLayerVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setMicroLayerVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setMinBoxRelWidth(double) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the minimum relative box width.
setModelContext(InstancesHeader) - Method in class moa.classifiers.AbstractClassifier
 
setModelContext(InstancesHeader) - Method in interface moa.classifiers.Classifier
Sets the reference to the header of the data stream.
setModelContext(InstancesHeader) - Method in class moa.classifiers.lazy.kNN
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.MEKAClassifier
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.meta.MLOzaBag
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.meta.MLOzaBagAdwin
 
setModelContext(InstancesHeader) - Method in class moa.classifiers.multilabel.MultilabelHoeffdingTree
 
setModelContext(InstancesHeader) - Method in class moa.clusterers.AbstractClusterer
 
setModelContext(InstancesHeader) - Method in interface moa.clusterers.Clusterer
 
setN(double) - Method in class moa.cluster.CFCluster
 
setNIterations(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
setNode(Node) - Method in class moa.clusterers.clustree.Entry
 
setNodeList(List<RuleSplitNode>) - Method in class moa.classifiers.rules.core.Rule
 
setNodeSplitter(KDTreeNodeSplitter) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the splitting method to use to split the nodes of the KDTree.
setNodeWidthNormalization(boolean) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Sets whether if a nodes region is normalized or not.
setNormalizeNodeWidth(boolean) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Sets the flag for normalizing the widths of a KDTree Node by the width of the dimension in the universe.
setNumLabels(int) - Method in class moa.core.MultilabelInstance
 
setOptions(String[]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Parses a given list of options.
setOptions(String[]) - Method in class weka.classifiers.meta.MOA
Parses a given list of options.
setOptions(String[]) - Method in class weka.datagenerators.classifiers.classification.MOA
Parses a list of options for this object.
setOutiler(boolean) - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
 
setOutlierDetector(MyBaseOutlierDetector) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setOutlierSetupTab(OutlierSetupTab) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setOutliersVisibility(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setOutliersVisibility(boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setOwner(Rule) - Method in class moa.classifiers.rules.core.Rule.Builder
 
setPanelTitle(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setPanelTitle(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setParent(FIMTDD.SplitNode) - Method in class moa.classifiers.trees.FIMTDD.Node
Set the parent node
setParent(ORTO.InnerNode) - Method in class moa.classifiers.trees.ORTO.Node
Set the parent node
setParentEntry(Entry) - Method in class moa.clusterers.clustree.Entry
 
setPauseInterval(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setPauseInterval(int) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setPerceptron(Perceptron) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
setPointLayerVisibility(boolean) - Method in class moa.gui.visualization.RunVisualizer
 
setPointsVisibility(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setPointsVisibility(boolean) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setPointVisibility(boolean) - Method in class moa.gui.visualization.StreamPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.RegressionTaskManagerPanel
 
setPreviewPanel(PreviewPanel) - Method in class moa.gui.TaskManagerPanel
 
setProcessedPointsCounter(int) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
setProcessedPointsCounter(int) - Method in class moa.gui.outliertab.OutlierVisualTab
 
setProcessFrequency(int) - Method in class moa.gui.visualization.GraphAxes
 
SetProgressInterval(int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setRadius(double) - Method in class moa.cluster.SphereCluster
 
setRandomSeed(int) - Method in class moa.classifiers.AbstractClassifier
 
setRandomSeed(int) - Method in interface moa.classifiers.Classifier
Sets the seed for random number generation.
setRandomSeed(int) - Method in class moa.clusterers.AbstractClusterer
 
setRandomSeed(int) - Method in interface moa.clusterers.Clusterer
 
setRating(int, int, double) - Method in class moa.recommender.rc.data.AbstractRecommenderData
 
setRating(int, int, double) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
setRating(int, int, double) - Method in interface moa.recommender.rc.data.RecommenderData
 
setResetTree() - Method in class moa.classifiers.trees.ASHoeffdingTree
 
setRFactor(double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
setRuleNumberID(int) - Method in class moa.classifiers.rules.core.Rule
 
setSaveInstanceData(boolean) - Method in class moa.clusterers.CobWeb
Set the value of saveInstances.
setSecond(U) - Method in class moa.recommender.rc.utils.Pair
 
setSeed(long) - Method in class moa.clusterers.streamkm.MTRandom
This method resets the state of this instance using the 64 bits of seed data provided.
setSeed(byte[]) - Method in class moa.clusterers.streamkm.MTRandom
This method resets the state of this instance using the byte array of seed data provided.
setSeed(int[]) - Method in class moa.clusterers.streamkm.MTRandom
This method resets the state of this instance using the integer array of seed data provided.
SetShowProgress(boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setSkipIdentical(boolean) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Sets the property to skip identical instances (with distance zero from the target) from the set of neighbours returned.
setSourceClustering(Clustering) - Method in class moa.clusterers.ClusterGenerator
 
setSpeed(int) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setSpeed(int) - Method in class moa.gui.visualization.RunVisualizer
 
setSplitIndex(int) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setStatisticsBranchSplit(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setStatisticsNewRuleActiveLearningNode(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setStatisticsOtherBranchSplit(double[]) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
setStreamValueAsCLIString(String) - Method in class moa.gui.clustertab.ClusteringAlgoPanel
 
setStreamValueAsCLIString(String) - Method in class moa.gui.outliertab.OutlierAlgoPanel
 
setSymbol(double) - Method in class moa.classifiers.rules.Predicates
 
setTargetMean(TargetMean) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
setTaskString(String) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.RegressionTaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.RegressionTaskManagerPanel
 
setTaskString(String) - Method in class moa.gui.TaskManagerPanel
 
setTaskString(String, boolean) - Method in class moa.gui.TaskManagerPanel
 
setTaskThreadToPreview(TaskThread) - Method in class moa.gui.PreviewPanel
 
setText(String) - Method in class moa.gui.TaskTextViewerPanel
 
setText(String) - Method in class moa.gui.TextViewerPanel
 
setTimestamp(long) - Method in class moa.clusterers.denstream.Timestamp
 
SetTrace(boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
SetUserInfo(boolean, boolean, MyBaseOutlierDetector.PrintMsg, int) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
setValue(double) - Method in class moa.classifiers.rules.Predicates
 
setValue(int, double) - Method in class moa.core.DoubleVector
 
setValue(boolean) - Method in class moa.options.FlagOption
 
setValue(double) - Method in class moa.options.FloatOption
 
setValue(int) - Method in class moa.options.IntOption
 
setValue(String) - Method in class moa.options.StringOption
 
setValueViaCLIString(String) - Method in class moa.options.AbstractClassOption
 
setValueViaCLIString(String) - Method in class moa.options.ClassOption
 
setValueViaCLIString(String) - Method in class moa.options.ClassOptionWithNames
 
setValueViaCLIString(String) - Method in class moa.options.FlagOption
 
setValueViaCLIString(String) - Method in class moa.options.FloatOption
 
setValueViaCLIString(String) - Method in class moa.options.IntOption
 
setValueViaCLIString(String) - Method in class moa.options.ListOption
 
setValueViaCLIString(String) - Method in class moa.options.MultiChoiceOption
 
setValueViaCLIString(String) - Method in interface moa.options.Option
Sets value of this option via the Command Line Interface text
setValueViaCLIString(String) - Method in class moa.options.StringOption
 
setValueViaCLIString(String) - Method in class moa.options.WEKAClassOption
 
setViaCLIString(String) - Method in class moa.options.Options
 
setViewport(JViewport) - Method in class moa.gui.visualization.GraphCanvas
 
setVisited() - Method in class moa.clusterers.macro.dbscan.DenseMicroCluster
 
setVisualizer(RunOutlierVisualizer) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setW(int) - Method in class moa.classifiers.core.driftdetection.ADWIN
 
setWaitWinFull(boolean) - Method in class moa.gui.visualization.RunOutlierVisualizer
 
setWeight(double) - Method in class moa.cluster.SphereCluster
 
setWeights(double[][]) - Method in class moa.classifiers.functions.Perceptron
 
setWeights(double[]) - Method in class moa.classifiers.rules.functions.Perceptron
 
setWeights(double[]) - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
setWeightSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
setWeightSeenAtLastSplitEvaluation(double) - Method in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
setXMaxValue(int) - Method in class moa.gui.visualization.GraphAxes
 
setXResolution(double) - Method in class moa.gui.visualization.GraphAxes
 
setYMinMaxValues(double, double) - Method in class moa.gui.visualization.GraphAxes
 
setYMinMaxValues(double, double) - Method in class moa.gui.visualization.GraphCurve
 
setZoom(int, int, int, JScrollPane) - Method in class moa.gui.visualization.StreamOutlierPanel
 
setZoom(int, int, int, JScrollPane) - Method in class moa.gui.visualization.StreamPanel
 
SGD - Class in moa.classifiers.functions
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
SGD() - Constructor for class moa.classifiers.functions.SGD
 
SGDMultiClass - Class in moa.classifiers.functions
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
SGDMultiClass() - Constructor for class moa.classifiers.functions.SGDMultiClass
 
shallowClear() - Method in class moa.clusterers.clustree.Entry
Clear the data and the buffer Custer in this entry.
showEditOptionsDialog(Component, String, OptionHandler) - Static method in class moa.gui.OptionsConfigurationPanel
 
showErrorDialog(Component, String, String) - Static method in class moa.gui.GUIUtils
 
showExceptionDialog(Component, String, Exception) - Static method in class moa.gui.GUIUtils
 
showHelpDialog() - Method in class moa.gui.OptionsConfigurationPanel
 
ShowProgress(String) - Method in interface moa.clusterers.outliers.MyBaseOutlierDetector.ProgressInfo
 
ShowProgress(String) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
ShowProgress(String, boolean) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
showSelectClassDialog(Component, String, Class<?>, String, String) - Static method in class moa.gui.ClassOptionSelectionPanel
 
showSelectClassDialog(Component, String, Class<?>, String, String, String[]) - Static method in class moa.gui.ClassOptionWithNamesSelectionPanel
 
shuffleRandomSeedOption - Variable in class moa.tasks.CacheShuffledStream
 
sigma - Variable in class moa.streams.generators.HyperplaneGenerator
 
sigmaPercentageOption - Variable in class moa.streams.generators.HyperplaneGenerator
 
SilhouetteCoefficient - Class in moa.evaluation
 
SilhouetteCoefficient() - Constructor for class moa.evaluation.SilhouetteCoefficient
 
SimpleBudget - Class in moa.clusterers.clustree.util
 
SimpleBudget(int) - Constructor for class moa.clusterers.clustree.util.SimpleBudget
 
SimpleCOD - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCOD() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCOD
 
SimpleCODBase - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCODBase() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
SimpleCODBase.EventItem - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCODBase.EventItem(ISBIndex.ISBNode, Long) - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
SimpleCODBase.EventQueue - Class in moa.clusterers.outliers.SimpleCOD
 
SimpleCODBase.EventQueue() - Constructor for class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventQueue
 
SingleClassifierDrift - Class in moa.classifiers.drift
Class for handling concept drift datasets with a wrapper on a classifier.
SingleClassifierDrift() - Constructor for class moa.classifiers.drift.SingleClassifierDrift
 
size() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the size of the heap.
size() - Method in class moa.cluster.Clustering
 
size() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns the size of the set.
size() - Method in class moa.recommender.rc.utils.DenseVector
 
size() - Method in class moa.recommender.rc.utils.SparseVector
 
size() - Method in class moa.recommender.rc.utils.Vector
 
sizeCoresetOption - Variable in class moa.clusterers.streamkm.StreamKM
 
SizeOf - Class in moa.core
SizeOf() - Constructor for class moa.core.SizeOf
 
sizeOf(Object) - Static method in class moa.core.SizeOf
Returns the size of the object.
SizeWindow - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
SizeWindow - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
skewOption - Variable in class moa.streams.generators.multilabel.MetaMultilabelGenerator
 
skip(long) - Method in class moa.core.InputStreamProgressMonitor
 
skipIdenticalTipText() - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Returns the tip text for this property.
slider - Variable in class moa.gui.FloatOptionEditComponent
 
slider - Variable in class moa.gui.IntOptionEditComponent
 
SLIDER_RESOLUTION - Static variable in class moa.gui.FloatOptionEditComponent
 
sliderValueToFloatValue(int) - Method in class moa.gui.FloatOptionEditComponent
 
SlidingMidPointOfWidestSide - Class in moa.classifiers.lazy.neighboursearch.kdtrees
The class that splits a node into two based on the midpoint value of the dimension in which the node's rectangle is widest.
SlidingMidPointOfWidestSide() - Constructor for class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
 
smoothingOption - Variable in class moa.classifiers.meta.OCBoost
 
smoothOption - Variable in class moa.tasks.Plot
Determines whether to smooth the plot with bezier curves.
sortByValue(Map<K, V>) - Static method in class moa.streams.filters.ReplacingMissingValuesFilter.MapUtil
 
sp - Variable in class moa.gui.visualization.PointPanel
 
SparseVector - Class in moa.recommender.rc.utils
 
SparseVector() - Constructor for class moa.recommender.rc.utils.SparseVector
 
SparseVector(Map<Integer, Double>) - Constructor for class moa.recommender.rc.utils.SparseVector
 
SparseVector.SparseVectorIterator - Class in moa.recommender.rc.utils
 
SparseVector.SparseVectorIterator() - Constructor for class moa.recommender.rc.utils.SparseVector.SparseVectorIterator
 
speedCentroids - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
 
speedChangeOption - Variable in class moa.streams.generators.RandomRBFGeneratorDrift
 
speedOption - Variable in class moa.clusterers.denstream.WithDBSCAN
 
speedOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
speedRangeOption - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
SPegasos - Class in moa.classifiers.functions
Implements the stochastic variant of the Pegasos (Primal Estimated sub-GrAdient SOlver for SVM) method of Shalev-Shwartz et al.
SPegasos() - Constructor for class moa.classifiers.functions.SPegasos
 
SphereCluster - Class in moa.cluster
A simple implementation of the Cluster interface representing spherical clusters.
SphereCluster(double[], double) - Constructor for class moa.cluster.SphereCluster
 
SphereCluster() - Constructor for class moa.cluster.SphereCluster
 
SphereCluster(double[], double, double) - Constructor for class moa.cluster.SphereCluster
 
SphereCluster(int, double, Random) - Constructor for class moa.cluster.SphereCluster
 
SphereCluster(List<? extends Instance>, int) - Constructor for class moa.cluster.SphereCluster
 
spinner - Variable in class moa.gui.FloatOptionEditComponent
 
spinner - Variable in class moa.gui.IntOptionEditComponent
 
split() - Method in class moa.classifiers.rules.core.Rule
 
splitAttIndex - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
splitAttValue - Variable in class moa.streams.generators.RandomTreeGenerator.Node
 
splitConfidenceOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
splitConfidenceOption - Variable in class moa.classifiers.rules.RuleClassifier
 
splitConfidenceOption - Variable in class moa.classifiers.trees.FIMTDD
 
splitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
splitConfidenceOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
splitConfidenceOption - Variable in class moa.classifiers.trees.ORTO
 
SplitCriterion - Interface in moa.classifiers.core.splitcriteria
Interface for computing splitting criteria.
splitCriterionOption - Variable in class moa.classifiers.trees.DecisionStump
 
splitCriterionOption - Variable in class moa.classifiers.trees.FIMTDD
 
splitCriterionOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
splitCriterionOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
splitCriterionOption - Variable in class moa.classifiers.trees.ORTO
 
splitFunction - Variable in class moa.clusterers.outliers.utils.mtree.MTree
 
SplitFunction<DATA> - Interface in moa.clusterers.outliers.utils.mtree
Defines an object to be used to split a node in an M-Tree.
SplitFunction.SplitResult<DATA> - Class in moa.clusterers.outliers.utils.mtree
An object used as the result for the SplitFunction.process(Set, DistanceFunction) method.
SplitFunction.SplitResult(Pair<DATA>, Pair<Set<DATA>>) - Constructor for class moa.clusterers.outliers.utils.mtree.SplitFunction.SplitResult
The constructor for a SplitFunction.SplitResult object.
splitIndex - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Splits a node into two.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KMeansInpiredMethod
Splits a node into two such that the overall sum of squared distances of points to their centres on both sides of the (axis-parallel) splitting plane is minimum.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MedianOfWidestDimension
Splits a node into two based on the median value of the dimension in which the points have the widest spread.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.MidPointOfWidestDimension
Splits a node into two based on the midpoint value of the dimension in which the points have the widest spread.
splitNode(KDTreeNode, int, double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.SlidingMidPointOfWidestSide
Splits a node into two based on the midpoint value of the dimension in which the node's rectangle is widest.
splitNodes(KDTreeNode, double[][], int) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Recursively splits nodes of a tree starting from the supplied node.
splitParameterFromRemainingOptions(String) - Static method in class moa.options.Options
Internal method that splits a string into two parts - the parameter for the current option, and the remaining options.
splitRatioStatistics - Variable in class moa.classifiers.trees.ORTO.ActiveLearningNode
 
splitTest - Variable in class moa.classifiers.core.AttributeSplitSuggestion
 
splitTest - Variable in class moa.classifiers.trees.FIMTDD.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
splitTest - Variable in class moa.classifiers.trees.ORTO.SplitNode
 
sqDifference(int, double, double) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns the squared difference of two values of an attribute.
squared_radius() - Method in class moa.cluster.Miniball
Return the sqaured Radius of the miniball
squaredActualClassStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
squaredAttributeStatistics - Variable in class moa.classifiers.rules.RuleClassification
 
squaredAttributeStatistics - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
squaredAttributeStatisticsSupervised - Variable in class moa.classifiers.rules.RuleClassification
 
SQUAREDLOSS - Static variable in class moa.classifiers.functions.SGD
 
SQUAREDLOSS - Static variable in class moa.classifiers.functions.SGDMultiClass
 
squaredperceptronattributeStatistics - Variable in class moa.classifiers.rules.functions.Perceptron
 
squaredperceptronsumY - Variable in class moa.classifiers.rules.functions.Perceptron
 
squareError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
squareError - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
squareTargetError - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
SS - Variable in class moa.cluster.CFCluster
Squared sum of all the points added to the cluster.
SSQ - Class in moa.evaluation
 
SSQ() - Constructor for class moa.evaluation.SSQ
 
SST - Variable in class moa.clusterers.clustream.ClustreamKernel
 
stabIndexSizeOption - Variable in class moa.classifiers.meta.ADACC
Threshold for the stability index
STAGGERGenerator - Class in moa.streams.generators
Stream generator for STAGGER Concept functions.
STAGGERGenerator() - Constructor for class moa.streams.generators.STAGGERGenerator
 
STAGGERGenerator.ClassFunction - Interface in moa.streams.generators
 
StandardTaskMonitor - Class in moa.tasks
Class that represents a standard task monitor.
StandardTaskMonitor() - Constructor for class moa.tasks.StandardTaskMonitor
 
StatisticalCollection - Class in moa.evaluation
 
StatisticalCollection() - Constructor for class moa.evaluation.StatisticalCollection
 
statistics - Variable in class moa.classifiers.rules.AbstractAMRules
 
statistics - Variable in class moa.classifiers.rules.core.Rule.Builder
 
statistics(double[]) - Method in class moa.classifiers.rules.core.Rule.Builder
 
statisticsBranchSplit - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
statisticsNewRuleActiveLearningNode - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
statisticsOtherBranchSplit() - Method in class moa.classifiers.rules.core.Rule
 
statisticsOtherBranchSplit - Variable in class moa.classifiers.rules.core.RuleActiveLearningNode
 
stdDev - Variable in class moa.streams.generators.RandomRBFGenerator.Centroid
 
stepOption - Variable in class moa.classifiers.active.ActiveClassifier
 
stop() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
stop() - Method in class moa.gui.visualization.RunVisualizer
 
stopMemManagementOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
stopRun() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
stopRun() - Method in class moa.gui.outliertab.OutlierSetupTab
 
stopVisualizer() - Method in class moa.gui.clustertab.ClusteringVisualTab
 
stopVisualizer() - Method in class moa.gui.outliertab.OutlierVisualTab
 
storedCountOption - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Number of classifiers remembered and available for ensemble construction.
storedLearners - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
storedWeights - Variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
The weights of stored classifiers.
STORMBase - Class in moa.clusterers.outliers.Angiulli
 
STORMBase() - Constructor for class moa.clusterers.outliers.Angiulli.STORMBase
 
StreamFilter - Interface in moa.streams.filters
Interface representing a stream filter.
streamHeader - Variable in class moa.streams.clustering.RandomRBFGeneratorEvents
 
streamHeader - Variable in class moa.streams.ConceptDriftRealStream
 
streamHeader - Variable in class moa.streams.generators.AgrawalGenerator
 
streamHeader - Variable in class moa.streams.generators.cd.AbstractConceptDriftGenerator
 
streamHeader - Variable in class moa.streams.generators.HyperplaneGenerator
 
streamHeader - Variable in class moa.streams.generators.LEDGenerator
 
streamHeader - Variable in class moa.streams.generators.RandomRBFGenerator
 
streamHeader - Variable in class moa.streams.generators.RandomTreeGenerator
 
streamHeader - Variable in class moa.streams.generators.SEAGenerator
 
streamHeader - Variable in class moa.streams.generators.STAGGERGenerator
 
streamHeader - Variable in class moa.streams.generators.WaveformGenerator
 
StreamKM - Class in moa.clusterers.streamkm
 
StreamKM() - Constructor for class moa.clusterers.streamkm.StreamKM
 
StreamObj - Class in moa.clusterers.outliers.AbstractC
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.AbstractC.StreamObj
 
StreamObj - Class in moa.clusterers.outliers.Angiulli
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.Angiulli.StreamObj
 
StreamObj - Class in moa.clusterers.outliers.MCOD
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.MCOD.StreamObj
 
StreamObj - Class in moa.clusterers.outliers.SimpleCOD
 
StreamObj(double...) - Constructor for class moa.clusterers.outliers.SimpleCOD.StreamObj
 
streamOption - Variable in class moa.streams.ConceptDriftRealStream
 
streamOption - Variable in class moa.streams.ConceptDriftStream
 
streamOption - Variable in class moa.streams.FilteredStream
 
streamOption - Variable in class moa.streams.MultiFilteredStream
 
streamOption - Variable in class moa.tasks.CacheShuffledStream
 
streamOption - Variable in class moa.tasks.EvaluateClustering
 
streamOption - Variable in class moa.tasks.EvaluateConceptDrift
 
streamOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to select the stream the classifier will learn.
streamOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
streamOption - Variable in class moa.tasks.EvaluateModel
 
streamOption - Variable in class moa.tasks.EvaluateModelRegression
 
streamOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
streamOption - Variable in class moa.tasks.EvaluatePrequential
 
streamOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
streamOption - Variable in class moa.tasks.LearnModel
 
streamOption - Variable in class moa.tasks.LearnModelRegression
 
streamOption - Variable in class moa.tasks.MeasureStreamSpeed
 
streamOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
StreamOutlierPanel - Class in moa.gui.visualization
 
StreamOutlierPanel(Color) - Constructor for class moa.gui.visualization.StreamOutlierPanel
 
streamPanel - Variable in class moa.gui.visualization.ClusterPanel
 
streamPanel - Variable in class moa.gui.visualization.OutlierPanel
 
StreamPanel - Class in moa.gui.visualization
 
StreamPanel() - Constructor for class moa.gui.visualization.StreamPanel
Creates new form StreamPanel
streamParameterOption - Variable in class moa.tasks.RunStreamTasks
 
streamPos - Variable in class moa.streams.CachedInstancesStream
 
StringOption - Class in moa.options
String option.
StringOption(String, char, String, String) - Constructor for class moa.options.StringOption
 
StringOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a string option.
StringOptionEditComponent(Option) - Constructor for class moa.gui.StringOptionEditComponent
 
StringUtils - Class in moa.core
Class implementing some string utility methods.
StringUtils() - Constructor for class moa.core.StringUtils
 
stripPackagePrefix(String, Class<?>) - Static method in class moa.options.AbstractClassOption
Gets the class name without its package name prefix.
subtractValues(DoubleVector) - Method in class moa.core.DoubleVector
 
subtractValues(double[]) - Method in class moa.core.DoubleVector
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree.Node
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree.Node
 
subtreeDepth() - Method in class moa.classifiers.trees.HoeffdingTree.SplitNode
 
sum - Variable in class moa.classifiers.rules.functions.TargetMean
 
sum - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
sum - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
sumAbsolutError - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
summary - Variable in class moa.core.GreenwaldKhannaQuantileSummary
 
sumOfAbsErrors - Variable in class moa.classifiers.trees.FIMTDD.Node
 
sumOfSquares - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
sumOfSquares - Variable in class moa.classifiers.trees.FIMTDD.Node
 
sumOfValues - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
sumOfValues - Variable in class moa.classifiers.trees.FIMTDD.Node
 
sumOfValues() - Method in class moa.core.DoubleVector
 
sumRatings - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
sumTarget - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
Supervised - Variable in class moa.classifiers.rules.RuleClassifier
 
supportsCustomEditor() - Method in class weka.gui.MOAClassOptionEditor
Returns true because we do support a custom editor.
suppressHeaderOption - Variable in class moa.tasks.WriteStreamToARFFFile
 
suppressIrrelevantAttributesOption - Variable in class moa.streams.generators.LEDGenerator
 
switchedAlternateTrees - Variable in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
swms - Variable in class moa.classifiers.meta.OzaBoost
 
swms - Variable in class moa.classifiers.meta.OzaBoostAdwin
 

T

targetFunctionValue(int, int, Point[], Point[]) - Method in class moa.clusterers.streamkm.StreamKM
computes the target function for the given pointarray points[] (of size n) with the given array of centres centres[] (of size k)
targetMean - Variable in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
TargetMean - Class in moa.classifiers.rules.functions
 
TargetMean(TargetMean) - Constructor for class moa.classifiers.rules.functions.TargetMean
 
TargetMean() - Constructor for class moa.classifiers.rules.functions.TargetMean
 
task - Variable in class moa.tasks.RunStreamTasks
 
task - Variable in class moa.tasks.RunTasks
 
Task - Interface in moa.tasks
Interface representing a task.
taskCompleted(TaskThread) - Method in interface moa.tasks.TaskCompletionListener
The method to perform when the task finishes.
TaskCompletionListener - Interface in moa.tasks
Interface representing a listener for the task in TaskThread to be completed.
taskDescField - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskDescField - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskDescField - Variable in class moa.gui.TaskManagerPanel
 
taskEndTime - Variable in class moa.tasks.TaskThread
 
TaskLauncher - Class in moa.gui
The old main class for the MOA gui, now the main class is GUI.
TaskLauncher() - Constructor for class moa.gui.TaskLauncher
 
taskList - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskList - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskList - Variable in class moa.gui.TaskManagerPanel
 
taskManagerPanel - Variable in class moa.gui.ClassificationTabPanel
 
taskManagerPanel - Variable in class moa.gui.ConceptDriftTabPanel
 
taskManagerPanel - Variable in class moa.gui.RegressionTabPanel
 
taskManagerPanel - Variable in class moa.gui.TaskLauncher
 
TaskManagerPanel - Class in moa.gui
This panel displays the running tasks.
TaskManagerPanel() - Constructor for class moa.gui.TaskManagerPanel
 
taskManagerPanel - Variable in class moa.gui.TaskTextViewerPanel
 
TaskManagerPanel.ProgressCellRenderer - Class in moa.gui
 
TaskManagerPanel.ProgressCellRenderer() - Constructor for class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
TaskManagerPanel.TaskTableModel - Class in moa.gui
 
TaskManagerPanel.TaskTableModel() - Constructor for class moa.gui.TaskManagerPanel.TaskTableModel
 
TaskMonitor - Interface in moa.tasks
Interface representing a task monitor.
taskMonitor - Variable in class moa.tasks.TaskThread
 
taskOption - Variable in class moa.tasks.RunStreamTasks
 
taskOption - Variable in class moa.tasks.RunTasks
 
taskSelectionChanged() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.RegressionTaskManagerPanel
 
taskSelectionChanged() - Method in class moa.gui.TaskManagerPanel
 
taskShouldAbort() - Method in class moa.tasks.NullMonitor
 
taskShouldAbort() - Method in class moa.tasks.StandardTaskMonitor
 
taskShouldAbort() - Method in interface moa.tasks.TaskMonitor
Gets whether the task should abort.
taskStartTime - Variable in class moa.tasks.TaskThread
 
taskTable - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskTable - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskTable - Variable in class moa.gui.TaskManagerPanel
 
taskTableModel - Variable in class moa.gui.conceptdrift.CDTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.RegressionTaskManagerPanel
 
taskTableModel - Variable in class moa.gui.TaskManagerPanel
 
TaskTextViewerPanel - Class in moa.gui
This panel displays text.
TaskTextViewerPanel() - Constructor for class moa.gui.TaskTextViewerPanel
 
TaskTextViewerPanel(PreviewPanel.TypePanel, CDTaskManagerPanel) - Constructor for class moa.gui.TaskTextViewerPanel
 
TaskThread - Class in moa.tasks
Task Thread.
TaskThread(Task) - Constructor for class moa.tasks.TaskThread
 
TaskThread(Task, ObjectRepository) - Constructor for class moa.tasks.TaskThread
 
TaskThread.Status - Enum in moa.tasks
 
tau_size - Variable in class moa.classifiers.meta.ADACC
Size of the evaluation window to compute the stability index
tauSizeOption - Variable in class moa.classifiers.meta.ADACC
Evaluation window for the stability index computation
TemporallyAugmentedClassifier - Class in moa.classifiers.meta
Include labels of previous instances into the training data
TemporallyAugmentedClassifier() - Constructor for class moa.classifiers.meta.TemporallyAugmentedClassifier
 
Test - Class in moa.clusterers.outliers.AbstractC
 
Test() - Constructor for class moa.clusterers.outliers.AbstractC.Test
 
Test - Class in moa.clusterers.outliers.Angiulli
 
Test() - Constructor for class moa.clusterers.outliers.Angiulli.Test
 
Test - Class in moa.clusterers.outliers.MCOD
 
Test() - Constructor for class moa.clusterers.outliers.MCOD.Test
 
Test - Class in moa.clusterers.outliers.SimpleCOD
 
Test() - Constructor for class moa.clusterers.outliers.SimpleCOD.Test
 
testSizeOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
TestSpeed - Class in moa.clusterers.outliers
 
TestSpeed() - Constructor for class moa.clusterers.outliers.TestSpeed
 
textArea - Variable in class moa.gui.TaskTextViewerPanel
 
textArea - Variable in class moa.gui.TextViewerPanel
 
textField - Variable in class moa.gui.ClassOptionEditComponent
 
textField - Variable in class moa.gui.ClassOptionWithNamesEditComponent
 
textField - Variable in class moa.gui.FileOptionEditComponent
 
textField - Variable in class moa.gui.WEKAClassOptionEditComponent
 
textViewerPanel - Variable in class moa.gui.PreviewPanel
 
TextViewerPanel - Class in moa.gui
This panel displays text.
TextViewerPanel() - Constructor for class moa.gui.TextViewerPanel
 
theBestAttributes(Instance, AutoExpandVector<AttributeClassObserver>) - Method in class moa.classifiers.rules.RuleClassifier
 
theta - Variable in class moa.classifiers.meta.OnlineSmoothBoost
 
theta_diff - Variable in class moa.classifiers.meta.ADACC
Threshold values for the stability index and concept equivalence
theta_stab - Variable in class moa.classifiers.meta.ADACC
Threshold values for the stability index and concept equivalence
threshholdOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
threshold - Variable in class moa.classifiers.rules.core.Rule.Builder
 
threshold(double) - Method in class moa.classifiers.rules.core.Rule.Builder
 
threshold - Variable in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
tieThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
tieThresholdOption - Variable in class moa.classifiers.rules.RuleClassifier
 
tieThresholdOption - Variable in class moa.classifiers.trees.FIMTDD
 
tieThresholdOption - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
tieThresholdOption - Variable in class moa.classifiers.trees.HoeffdingTree
 
tieThresholdOption - Variable in class moa.classifiers.trees.ORTO
 
time - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
timeLimitOption - Variable in class moa.tasks.EvaluateConceptDrift
 
timeLimitOption - Variable in class moa.tasks.EvaluateInterleavedChunks
Allows to define the maximum number of seconds to test/train for (-1 = no limit).
timeLimitOption - Variable in class moa.tasks.EvaluateInterleavedTestThenTrain
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequential
 
timeLimitOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
timeStamp - Variable in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
Timestamp - Class in moa.clusterers.denstream
 
Timestamp(long) - Constructor for class moa.clusterers.denstream.Timestamp
 
Timestamp() - Constructor for class moa.clusterers.denstream.Timestamp
 
timeStamp - Variable in class moa.clusterers.outliers.MCOD.MCODBase.EventItem
 
timeStamp - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase.EventItem
 
timestamp - Variable in class moa.gui.visualization.DataPoint
 
timeWindowOption - Variable in class moa.clusterers.ClusterGenerator
 
timeWindowOption - Variable in class moa.clusterers.clustream.Clustream
 
timeWindowOption - Variable in class moa.clusterers.clustream.WithKmeans
 
TimingUtils - Class in moa.core
Class implementing some time utility methods.
TimingUtils() - Constructor for class moa.core.TimingUtils
 
toCluster() - Method in class moa.clusterers.streamkm.Point
 
toCommandLine(MOAObject) - Static method in class weka.core.MOAUtils
Returs the commandline for the given object.
toggleRunMode() - Method in class moa.gui.clustertab.ClusteringSetupTab
 
toggleRunMode() - Method in class moa.gui.outliertab.OutlierSetupTab
 
toggleVisualizer(boolean) - Method in class moa.gui.clustertab.ClusteringVisualTab
 
toggleVisualizer(boolean) - Method in class moa.gui.outliertab.OutlierVisualTab
 
toIntArray(Instance, int) - Static method in class moa.core.utils.EvalUtils
Convert Instance to bit array.
toStream - Variable in class moa.streams.CachedInstancesStream
 
toString() - Method in class moa.AbstractMOAObject
Returns a description of the object.
toString() - Method in class moa.classifiers.functions.SGD
Prints out the classifier.
toString() - Method in class moa.classifiers.functions.SGDMultiClass
Prints out the classifier.
toString() - Method in class moa.classifiers.functions.SPegasos
Prints out the classifier.
toString() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Returns an empty string.
toString() - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
toString() - Method in class moa.classifiers.rules.core.conditionaltests.NumericAttributeBinaryRulePredicate
 
toString() - Method in class moa.clusterers.outliers.AnyOut.util.DataObject
Returns a String representation of the point.
toString() - Method in class moa.clusterers.outliers.AnyOut.util.DataSet
Returns a String representation of all the DataObjects in the code as a list of the representation implemented for these.
toString() - Method in class moa.evaluation.MembershipMatrix
 
toString() - Method in class moa.recommender.dataset.impl.FlixsterDataset
 
toString() - Method in class moa.recommender.dataset.impl.JesterDataset
 
toString() - Method in class moa.recommender.dataset.impl.MovielensDataset
 
toString() - Method in class weka.classifiers.meta.MOA
Returns a string representation of the model.
total() - Method in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
total() - Method in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
TOTAL_ATTRIBUTES_INCLUDING_NOISE - Static variable in class moa.streams.generators.WaveformGenerator
 
total_c - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
total_n - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
totalCacheInstances - Variable in class moa.streams.filters.CacheFilter
 
totalDelay - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
totalSize(Instance) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
 
totalSize() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
returns the total size.
totalWeightObserved - Variable in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
TotalweightObserved - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
TotalweightObserved - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
TotalweightObserved - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
TotalweightObserved - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
totalWeightOfClassObservations() - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
totalWeightOfClassObservations() - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
train(DataSet) - Method in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
train() - Method in class moa.recommender.predictor.BaselinePredictor
 
train() - Method in class moa.recommender.predictor.BRISMFPredictor
 
train() - Method in interface moa.recommender.predictor.RatingPredictor
 
train() - Method in class moa.recommender.rc.predictor.impl.BaselinePredictor
 
train() - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
train() - Method in interface moa.recommender.rc.predictor.RatingPredictor
 
trainAndClassify(Instance) - Method in class moa.classifiers.meta.DACC
Receives a training instance from the stream and updates the adaptive classifiers accordingly
trainingHasStarted() - Method in class moa.classifiers.AbstractClassifier
 
trainingHasStarted() - Method in interface moa.classifiers.Classifier
Gets whether training has started.
trainingHasStarted() - Method in class moa.clusterers.AbstractClusterer
 
trainingHasStarted() - Method in interface moa.clusterers.Clusterer
 
trainingSetSizeOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
trainingWeightSeenByModel - Variable in class moa.classifiers.AbstractClassifier
Sum of the weights of the instances trained by this model
trainingWeightSeenByModel() - Method in class moa.classifiers.AbstractClassifier
 
trainingWeightSeenByModel() - Method in interface moa.classifiers.Classifier
Gets the sum of the weights of the instances that have been used by this classifier during the training in trainOnInstance
trainingWeightSeenByModel - Variable in class moa.clusterers.AbstractClusterer
 
trainingWeightSeenByModel() - Method in class moa.clusterers.AbstractClusterer
 
trainingWeightSeenByModel() - Method in interface moa.clusterers.Clusterer
 
trainItem(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItem(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItem(int, List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainItemFeats(int, List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainOnInstance(Instance) - Method in class moa.classifiers.AbstractClassifier
 
trainOnInstance(Instance) - Method in interface moa.classifiers.Classifier
Trains this classifier incrementally using the given instance.
trainOnInstance(Instance) - Method in class moa.clusterers.AbstractClusterer
 
trainOnInstance(Instance) - Method in interface moa.clusterers.Clusterer
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.AbstractClassifier
Trains this classifier incrementally using the given instance.

The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.active.ActiveClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.bayes.NaiveBayes
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.bayes.NaiveBayesMultinomial
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.MajorityClass
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.NoChange
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.Perceptron
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.SGD
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.SGDMultiClass
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance, int) - Method in class moa.classifiers.functions.SGDMultiClass
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.functions.SPegasos
Trains the classifier with the given instance.
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.lazy.kNN
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.lazy.kNNwithPAW
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.lazy.kNNwithPAWandADWIN
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.AccuracyUpdatedEnsemble
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.AccuracyWeightedEnsemble
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.ADACC
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.DACC
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.LeveragingBag
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.LimAttClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OCBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OnlineSmoothBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBag
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBagAdwin
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBagASHT
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBoost
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.OzaBoostAdwin
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.RandomRules
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.TemporallyAugmentedClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.WeightedMajorityAlgorithm
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.meta.WEKAClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.multilabel.MEKAClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.multilabel.meta.MLOzaBagAdwin
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.FadingTargetMean
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.Perceptron
Update the model using the provided instance
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.functions.TargetMean
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.ASHoeffdingTree
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.DecisionStump
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.FIMTDD
Method for updating (training) the model using a new instance
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.HoeffdingAdaptiveTree
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.HoeffdingOptionTree
 
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.HoeffdingTree
 
trainOnInstanceImpl(Instance, ORTO) - Method in class moa.classifiers.trees.ORTO.ORTOPerceptron
Update the model using the provided instance
trainOnInstanceImpl(Instance) - Method in class moa.classifiers.trees.ORTO
Method for updating (training) the model using a new instance
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.AbstractClusterer
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.ClusterGenerator
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.clustream.Clustream
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.clustream.WithKmeans
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.clustree.ClusTree
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.CobWeb
Adds an instance to the clusterer.
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.denstream.WithDBSCAN
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.streamkm.StreamKM
 
trainOnInstanceImpl(Instance) - Method in class moa.clusterers.WekaClusteringAlgorithm
 
trainOnInstanceImpl(Instance) - Method in class moa.learners.ChangeDetectorLearner
 
trainOnInstanceImplPerceptron(int, int, double[][]) - Method in class moa.classifiers.meta.LimAttClassifier
 
trainSizeOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
trainTimeOption - Variable in class moa.tasks.EvaluatePeriodicHeldOutTest
 
trainUser(int, List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUser(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUser(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
trainUserFeats(List<Integer>, List<Double>, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
treeCoreset - Variable in class moa.clusterers.streamkm.BucketManager
 
TreeCoreset - Class in moa.clusterers.streamkm
 
TreeCoreset() - Constructor for class moa.clusterers.streamkm.TreeCoreset
 
TreeCoreset.treeNode - Class in moa.clusterers.streamkm
datastructure representing a node within a tree
TreeCoreset.treeNode(int, Point[], Point, TreeCoreset.treeNode) - Constructor for class moa.clusterers.streamkm.TreeCoreset.treeNode
 
TreeCoreset.treeNode(Point[], Point[], int, int, Point, int) - Constructor for class moa.clusterers.streamkm.TreeCoreset.treeNode
initalizes root as a treenode with the union of setA and setB as pointset and centre as centre
treeRandomSeedOption - Variable in class moa.streams.generators.RandomTreeGenerator
 
treeRoot - Variable in class moa.classifiers.trees.FIMTDD
 
treeRoot - Variable in class moa.classifiers.trees.HoeffdingOptionTree
 
treeRoot - Variable in class moa.classifiers.trees.HoeffdingTree
 
treeRoot - Variable in class moa.classifiers.trees.ORTO
 
treeRoot - Variable in class moa.streams.generators.RandomTreeGenerator
 
trueClass - Variable in class moa.evaluation.CMM_GTAnalysis.CMMPoint
true class label
tryToExpand(double, double) - Method in class moa.classifiers.rules.core.Rule
Try to Expand method.
tryToExpand(double, double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
tryToExpand(double, double) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
type - Variable in class moa.gui.visualization.PointPanel
 
TYPE_CLUSTERED - Variable in class moa.gui.visualization.PointPanel
 
TYPE_PLAIN - Variable in class moa.gui.visualization.PointPanel
 
typePanel - Variable in class moa.gui.TaskTextViewerPanel
 

U

UniformWeightedVote - Class in moa.classifiers.rules.core.voting
UniformWeightedVote class for weighted votes based on estimates of errors.
UniformWeightedVote() - Constructor for class moa.classifiers.rules.core.voting.UniformWeightedVote
 
univariateAnomalyprobabilityThresholdOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
unorderedRulesOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
unset() - Method in class moa.options.FlagOption
 
Unsupervised - Variable in class moa.classifiers.rules.RuleClassifier
 
Updatable - Interface in moa.recommender.rc.utils
 
updatables - Variable in class moa.recommender.rc.data.AbstractRecommenderData
 
update(Instance) - Method in interface moa.classifiers.lazy.neighboursearch.DistanceFunction
Update the distance function (if necessary) for the newly added instance.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Adds one instance to the KDTree.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.LinearNNSearch
Updates the LinearNNSearch to cater for the new added instance.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch
Updates the NearNeighbourSearch algorithm for the new added instance.
update(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Update the distance function (if necessary) for the newly added instance.
update(double) - Method in class moa.classifiers.rules.driftdetection.PageHinkleyFading
 
update(double) - Method in class moa.classifiers.rules.driftdetection.PageHinkleyTest
 
update() - Method in class moa.gui.clustertab.ClusteringVisualEvalPanel
 
update() - Method in class moa.gui.outliertab.OutlierVisualEvalPanel
 
updateAccumulatedError(Instance) - Method in class moa.classifiers.rules.functions.TargetMean
 
updateAutoRefreshTimer() - Method in class moa.gui.PreviewPanel
 
updateCanvas() - Method in class moa.gui.visualization.GraphCanvas
 
updateCanvas(boolean) - Method in class moa.gui.visualization.GraphCanvas
 
updateChangeDetection(double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
updateClassifier(Instance) - Method in class weka.classifiers.meta.MOA
Updates a classifier using the given instance.
updateCount(Instance, int) - Method in class moa.classifiers.multilabel.MajorityLabelset
 
updateDistance(double, double) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Updates the current distance calculated so far with the new difference between two attributes.
updateDistance(double, double) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Updates the current distance calculated so far with the new difference between two attributes.
updateEstimations() - Method in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
updateEvaluationWindow(int, int) - Method in class moa.classifiers.meta.DACC
Updates the evaluation window of a classifier and returns the updated weight value.
updateInfo(String) - Method in class moa.gui.visualization.InfoPanel
 
updateLocation() - Method in class moa.gui.visualization.ClusterPanel
 
updateLocation() - Method in class moa.gui.visualization.OutlierPanel
 
updateLocation() - Method in class moa.gui.visualization.PointPanel
 
UpdateMaxMemUsage() - Method in class moa.clusterers.outliers.MyBaseOutlierDetector
 
updateNewItem(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateNewItem(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.utils.Updatable
 
updateNewUser(int, List<Integer>, List<Double>) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateNewUser(int, List<Integer>, List<Double>) - Method in interface moa.recommender.rc.utils.Updatable
 
updateOptionCount(HoeffdingOptionTree.SplitNode, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
updateOptionCountBelow(int, HoeffdingOptionTree) - Method in class moa.classifiers.trees.HoeffdingOptionTree.SplitNode
 
updatePageHinckleyTest(double) - Method in class moa.classifiers.rules.core.Rule
 
updatePageHinckleyTest(double) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
updatePerceptron(Instance, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
Update the model using the provided instance
updateRanges(Instance, int, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Updates the minimum and maximum and width values for all the attributes based on a new instance.
updateRanges(Instance, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Updates the ranges given a new instance.
updateRanges(Instance) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Update the ranges if a new instance comes.
updateRangesFirst(Instance, int, double[][]) - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
Used to initialize the ranges.
updateRemoveItem(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateRemoveItem(int) - Method in interface moa.recommender.rc.utils.Updatable
 
updateRemoveRating(int, int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateRemoveRating(int, int) - Method in interface moa.recommender.rc.utils.Updatable
 
updateRemoveUser(int) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateRemoveUser(int) - Method in interface moa.recommender.rc.utils.Updatable
 
updateRuleAttribStatistics(Instance, RuleClassification, int) - Method in class moa.classifiers.rules.RuleClassifier
 
updateSetRating(int, int, double) - Method in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
updateSetRating(int, int, double) - Method in interface moa.recommender.rc.utils.Updatable
 
updateStatistics(Instance) - Method in class moa.classifiers.rules.core.Rule
 
updateStatistics(Instance) - Method in class moa.classifiers.rules.core.RuleActiveLearningNode
 
updateStatistics(Instance) - Method in class moa.classifiers.rules.core.RuleActiveRegressionNode
 
UpdateStatistics(ISBIndex.ISBNode) - Method in class moa.clusterers.outliers.Angiulli.STORMBase
 
updateTooltip() - Method in class moa.gui.visualization.ClusterPanel
 
updateTooltip() - Method in class moa.gui.visualization.OutlierPanel
 
updateWeight(int, double) - Method in class moa.gui.visualization.DataPoint
 
updateWeights(Instance, double) - Method in class moa.classifiers.rules.functions.Perceptron
 
updateWeights(Instance, double, FIMTDD) - Method in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
upheap() - Method in class moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch.MyHeap
performs upheap operation for the heap to maintian its properties.
upperBound - Variable in class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
useBaggingOption - Variable in class moa.classifiers.meta.RandomRules
 
UseMeanScoreOption - Variable in class moa.clusterers.outliers.AnyOut.AnyOutCore
 
useMicroGT - Variable in class moa.gui.BatchCmd
 
usePerceptron - Variable in class moa.classifiers.rules.core.Rule.Builder
 
userExists(int) - Method in class moa.recommender.rc.data.impl.MemRecommenderData
 
userExists(int) - Method in interface moa.recommender.rc.data.RecommenderData
 
userFeature - Variable in class moa.recommender.rc.predictor.impl.BRISMFPredictor
 
userID - Variable in class moa.recommender.rc.utils.Rating
 
usersStats - Variable in class moa.recommender.rc.data.impl.MemRecommenderData
 
useWeightOption - Variable in class moa.classifiers.meta.OzaBagASHT
 
Utils - Class in moa.clusterers.outliers.utils.mtree.utils
Some utilities.

V

v - Variable in class moa.core.GreenwaldKhannaQuantileSummary.Tuple
 
validate() - Method in class moa.classifiers.lazy.neighboursearch.NormalizableDistance
performs the initializations if necessary.
validate() - Method in class moa.gui.conceptdrift.CDTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.RegressionTaskManagerPanel.ProgressCellRenderer
 
validate() - Method in class moa.gui.TaskManagerPanel.ProgressCellRenderer
 
ValorTargetRule - Variable in class moa.classifiers.rules.RuleClassification
 
value - Variable in class moa.core.Measurement
 
valueIsSmallerEqual(Instance, int, double) - Method in class moa.classifiers.lazy.neighboursearch.EuclideanDistance
Returns true if the value of the given dimension is smaller or equal the value to be compared with.
valueOf(String) - Static method in enum moa.clusterers.outliers.MCOD.ISBIndex.ISBNode.NodeType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.gui.PreviewPanel.TypePanel
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.LegendLocation
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.LegendType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.PlotStyle
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.Plot.Terminal
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum moa.tasks.TaskThread.Status
Returns the enum constant of this type with the specified name.
values() - Static method in enum moa.clusterers.outliers.MCOD.ISBIndex.ISBNode.NodeType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.gui.PreviewPanel.TypePanel
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.LegendLocation
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.LegendType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.PlotStyle
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.Plot.Terminal
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum moa.tasks.TaskThread.Status
Returns an array containing the constants of this enum type, in the order they are declared.
VarianceReductionSplitCriterion - Class in moa.classifiers.core.splitcriteria
 
VarianceReductionSplitCriterion() - Constructor for class moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion
 
varianceSum - Variable in class moa.core.GaussianEstimator
 
Vector - Class in moa.recommender.rc.utils
 
Vector() - Constructor for class moa.recommender.rc.utils.Vector
 
verboseOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Determines whether additional information should be sent to the output.
VerboseToConsole(Instance) - Method in class moa.classifiers.rules.AbstractAMRules
 
VerbosityOption - Variable in class moa.classifiers.rules.AbstractAMRules
 
versionString - Static variable in class moa.core.Globals
 
VFMLNumericAttributeClassObserver - Class in moa.classifiers.core.attributeclassobservers
Class for observing the class data distribution for a numeric attribute as in VFML.
VFMLNumericAttributeClassObserver() - Constructor for class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver
 
VFMLNumericAttributeClassObserver.Bin - Class in moa.classifiers.core.attributeclassobservers
 
VFMLNumericAttributeClassObserver.Bin() - Constructor for class moa.classifiers.core.attributeclassobservers.VFMLNumericAttributeClassObserver.Bin
 
votes - Variable in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
votingTypeOption - Variable in class moa.classifiers.rules.AMRulesRegressor
 

W

waitWinFullOption - Variable in class moa.clusterers.outliers.AbstractC.AbstractC
 
waitWinFullOption - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
warningConfidence - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
warningConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_A_Test
 
warningConfidenceOption - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
warningDetected - Variable in class moa.classifiers.drift.DriftDetectionMethodClassifier
 
WaveformGenerator - Class in moa.streams.generators
Stream generator for the problem of predicting one of three waveform types.
WaveformGenerator() - Constructor for class moa.streams.generators.WaveformGenerator
 
WaveformGeneratorDrift - Class in moa.streams.generators
Stream generator for the problem of predicting one of three waveform types with drift.
WaveformGeneratorDrift() - Constructor for class moa.streams.generators.WaveformGeneratorDrift
 
webAddress - Static variable in class moa.core.Globals
 
weightAttribute - Variable in class moa.classifiers.functions.Perceptron
 
weightAttribute - Variable in class moa.classifiers.meta.LimAttClassifier
 
weightAttribute - Variable in class moa.classifiers.rules.functions.Perceptron
 
weightAttribute - Variable in class moa.classifiers.rules.RuleClassification
 
weightAttribute - Variable in class moa.classifiers.trees.FIMTDD.FIMTDDPerceptron
 
weightAttribute - Variable in class moa.classifiers.trees.ORTO.ORTOPerceptron
 
weightComparator - Static variable in class moa.classifiers.meta.AccuracyWeightedEnsemble
Simple weight comparator.
weightCorrect - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
weightCorrect - Variable in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
weightCorrect - Variable in class moa.evaluation.EWMAClassificationPerformanceEvaluator
 
weightCorrect - Variable in class moa.evaluation.FadingFactorClassificationPerformanceEvaluator
 
weightCorrect - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
weightCorrectNoChangeClassifier - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
WeightedMajorityAlgorithm - Class in moa.classifiers.meta
Weighted majority algorithm for data streams.
WeightedMajorityAlgorithm() - Constructor for class moa.classifiers.meta.WeightedMajorityAlgorithm
 
weightedMax(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
weightedMaxNB(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
weightedSum(Instance) - Method in class moa.classifiers.rules.RuleClassifier
 
weightedSumNB(Instance) - Method in class moa.classifiers.rules.RuleClassifierNBayes
 
weightObserved - Variable in class moa.evaluation.BasicClassificationPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.BasicClusteringPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.BasicConceptDriftPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.BasicRegressionPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
weightObserved - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
weightOfObservedMissingValues() - Method in class moa.classifiers.core.attributeclassobservers.NominalAttributeClassObserver
 
weightOfObservedMissingValues() - Method in class moa.classifiers.core.attributeclassobservers.NullAttributeClassObserver
 
weights - Variable in class moa.classifiers.meta.AccuracyUpdatedEnsemble
The weights of stored classifiers.
weights - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
The weights of stored classifiers.
weights - Variable in class moa.classifiers.rules.core.voting.AbstractErrorWeightedVote
 
weights - Variable in class moa.streams.generators.HyperplaneGenerator
 
weightSeen - Variable in class moa.classifiers.trees.ORTO.InnerNode
 
weightSeenAtLastSplit - Variable in class moa.classifiers.trees.DecisionStump
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.FIMTDD.Node
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.HoeffdingOptionTree.ActiveLearningNode
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.HoeffdingTree.ActiveLearningNode
 
weightSeenAtLastSplitEvaluation - Variable in class moa.classifiers.trees.LimAttHoeffdingTree.LimAttLearningNode
 
weightShrinkOption - Variable in class moa.classifiers.meta.LeveragingBag
 
weightShrinkOption - Variable in class moa.classifiers.meta.LimAttClassifier
 
weightSum - Variable in class moa.core.GaussianEstimator
 
weka() - Method in class moa.gui.visualization.RunOutlierVisualizer
 
weka() - Method in class moa.gui.visualization.RunVisualizer
 
weka.classifiers.meta - package weka.classifiers.meta
 
weka.core - package weka.core
 
weka.datagenerators.classifiers.classification - package weka.datagenerators.classifiers.classification
 
weka.gui - package weka.gui
 
wekaAlgorithmOption - Variable in class moa.clusterers.WekaClusteringAlgorithm
 
WEKAClassifier - Class in moa.classifiers.meta
Class for using a classifier from WEKA.
WEKAClassifier() - Constructor for class moa.classifiers.meta.WEKAClassifier
 
WEKAClassOption - Class in moa.options
WEKA class option.
WEKAClassOption(String, char, String, Class<?>, String) - Constructor for class moa.options.WEKAClassOption
 
WEKAClassOption(String, char, String, Class<?>, String, String) - Constructor for class moa.options.WEKAClassOption
 
WEKAClassOptionEditComponent - Class in moa.gui
An OptionEditComponent that lets the user edit a WEKA class option.
WEKAClassOptionEditComponent(WEKAClassOption) - Constructor for class moa.gui.WEKAClassOptionEditComponent
 
WekaClusteringAlgorithm - Class in moa.clusterers
 
WekaClusteringAlgorithm() - Constructor for class moa.clusterers.WekaClusteringAlgorithm
 
WekaExplorer - Class in moa.gui.visualization
 
WekaExplorer(Instances) - Constructor for class moa.gui.visualization.WekaExplorer
 
widestDim(double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.KDTree
Returns the widest dimension/attribute in a KDTreeNode (widest after normalizing).
widestDim(double[][], double[][]) - Method in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Returns the widest dimension.
width - Variable in class moa.classifiers.core.driftdetection.HDDM_W_Test
 
WIDTH - Static variable in class moa.classifiers.lazy.neighboursearch.KDTree
The index of WIDTH (MAX-MIN) value in attributes' range array.
WIDTH - Static variable in class moa.classifiers.lazy.neighboursearch.kdtrees.KDTreeNodeSplitter
Index of width value (max-min) in an array of attributes' range.
widthInitOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
widthOption - Variable in class moa.classifiers.meta.WEKAClassifier
 
widthOption - Variable in class moa.clusterers.streamkm.StreamKM
 
widthOption - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator
 
widthOption - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator
 
widthOption - Variable in class moa.streams.ConceptDriftRealStream
 
widthOption - Variable in class moa.streams.ConceptDriftStream
 
widthOption - Variable in class moa.tasks.EvaluatePrequential
 
widthOption - Variable in class moa.tasks.EvaluatePrequentialRegression
 
window - Variable in class moa.classifiers.lazy.kNN
 
window - Variable in class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
window - Variable in class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
window_size - Variable in class moa.gui.visualization.ClusterPanel
 
window_size - Variable in class moa.gui.visualization.OutlierPanel
 
window_size - Variable in class moa.gui.visualization.PointPanel
 
WindowClassificationPerformanceEvaluator - Class in moa.evaluation
Classification evaluator that updates evaluation results using a sliding window.
WindowClassificationPerformanceEvaluator() - Constructor for class moa.evaluation.WindowClassificationPerformanceEvaluator
 
WindowClassificationPerformanceEvaluator.Estimator - Class in moa.evaluation
 
WindowClassificationPerformanceEvaluator.Estimator(int) - Constructor for class moa.evaluation.WindowClassificationPerformanceEvaluator.Estimator
 
windowNodes - Variable in class moa.clusterers.outliers.AbstractC.AbstractCBase
 
windowNodes - Variable in class moa.clusterers.outliers.Angiulli.STORMBase
 
windowNodes - Variable in class moa.clusterers.outliers.MCOD.MCODBase
 
windowNodes - Variable in class moa.clusterers.outliers.SimpleCOD.SimpleCODBase
 
WindowRegressionPerformanceEvaluator - Class in moa.evaluation
Regression evaluator that updates evaluation results using a sliding window.
WindowRegressionPerformanceEvaluator() - Constructor for class moa.evaluation.WindowRegressionPerformanceEvaluator
 
WindowRegressionPerformanceEvaluator.Estimator - Class in moa.evaluation
 
WindowRegressionPerformanceEvaluator.Estimator(int) - Constructor for class moa.evaluation.WindowRegressionPerformanceEvaluator.Estimator
 
windowSize - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Window size.
windowSizeOption - Variable in class moa.classifiers.meta.OnlineAccuracyUpdatedEnsemble
Chunk size.
windowSizeOption - Variable in class moa.clusterers.outliers.MyBaseOutlierDetector
 
WithDBSCAN - Class in moa.clusterers.denstream
 
WithDBSCAN() - Constructor for class moa.clusterers.denstream.WithDBSCAN
 
WithKmeans - Class in moa.clusterers.clustream
 
WithKmeans() - Constructor for class moa.clusterers.clustream.WithKmeans
 
wneg - Variable in class moa.classifiers.meta.OCBoost
 
workbenchTitle - Static variable in class moa.core.Globals
 
workclass() - Method in class moa.evaluation.CMM_GTAnalysis.CMMPoint
Retruns the current working label of the cluster the point belongs to.
wpos - Variable in class moa.classifiers.meta.OCBoost
 
write(int) - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
write(byte[], int, int) - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
write(byte[]) - Method in class moa.core.SerializeUtils.ByteCountingOutputStream
 
WriteStreamToARFFFile - Class in moa.tasks
Task to output a stream to an ARFF file
WriteStreamToARFFFile() - Constructor for class moa.tasks.WriteStreamToARFFFile
 
writeToFile(File, Serializable) - Static method in class moa.core.SerializeUtils
 

X

x_dim - Variable in class moa.gui.visualization.ClusterPanel
 
x_dim - Variable in class moa.gui.visualization.OutlierPanel
 
x_dim - Variable in class moa.gui.visualization.PointPanel
 
xAxisIndex - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
xColumnOption - Variable in class moa.tasks.Plot
Index of the csv column from which values for the x-axis should be taken.
XiSum - Variable in class moa.classifiers.rules.RuleClassification
 
xMax - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
xMin - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
xTitleOption - Variable in class moa.tasks.Plot
Title of the plots' x-axis.
xUnitOption - Variable in class moa.tasks.Plot
Units displayed next to x-axis values.

Y

y_dim - Variable in class moa.gui.visualization.ClusterPanel
 
y_dim - Variable in class moa.gui.visualization.OutlierPanel
 
y_dim - Variable in class moa.gui.visualization.PointPanel
 
yAxisIndex - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
yColumnOption - Variable in class moa.tasks.Plot
Index of the csv column from which values for the y-axis should be taken.
yMax - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
yMin - Variable in class moa.gui.LineGraphViewPanel.PlotLine
 
yTitleOption - Variable in class moa.tasks.Plot
Title of the plots' y-axis.
yUnitOption - Variable in class moa.tasks.Plot
Units displayed next to y-axis values.

_

_check() - Method in class moa.clusterers.outliers.utils.mtree.MTree
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y _ 

Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.