public class DriftDetectionMethodClassifier extends AbstractClassifier
Valid options are:
-l classname
Specify the full class name of a classifier as the basis for
the concept drift classifier.
-d Drift detection method to use
Modifier and Type | Field and Description |
---|---|
ClassOption |
baseLearnerOption |
protected int |
changeDetected |
protected Classifier |
classifier |
static int |
DDM_INCONTROL_LEVEL |
static int |
DDM_OUTCONTROL_LEVEL |
static int |
DDM_WARNING_LEVEL |
protected int |
ddmLevel |
protected ChangeDetector |
driftDetectionMethod |
ClassOption |
driftDetectionMethodOption |
protected Classifier |
newclassifier |
protected boolean |
newClassifierReset |
protected int |
warningDetected |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
DriftDetectionMethodClassifier() |
Modifier and Type | Method and Description |
---|---|
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public ClassOption baseLearnerOption
public ClassOption driftDetectionMethodOption
protected Classifier classifier
protected Classifier newclassifier
protected ChangeDetector driftDetectionMethod
protected boolean newClassifierReset
protected int ddmLevel
public static final int DDM_INCONTROL_LEVEL
public static final int DDM_WARNING_LEVEL
public static final int DDM_OUTCONTROL_LEVEL
protected int changeDetected
protected int warningDetected
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingpublic double[] getVotesForInstance(weka.core.Instance inst)
Classifier
inst
- the instance to be classifiedpublic boolean isRandomizable()
Classifier
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.