public class Perceptron extends AbstractClassifier
Performs classic perceptron multiclass learning incrementally.
Parameters:
| Modifier and Type | Field and Description |
|---|---|
FloatOption |
learningRatioOption |
protected int |
numberAttributes |
protected int |
numberClasses |
protected int |
numberDetections |
protected boolean |
reset |
protected double[][] |
weightAttribute |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
Perceptron() |
| Modifier and Type | Method and Description |
|---|---|
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
int |
getNumberAttributes() |
int |
getNumberClasses() |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
double[][] |
getWeights() |
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
double |
prediction(weka.core.Instance inst,
int classVal) |
void |
resetLearningImpl()
Resets this classifier.
|
void |
setWeights(double[][] w) |
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic FloatOption learningRatioOption
protected double[][] weightAttribute
protected boolean reset
protected int numberAttributes
protected int numberClasses
protected int numberDetections
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingpublic void setWeights(double[][] w)
public double[][] getWeights()
public int getNumberAttributes()
public int getNumberClasses()
public double prediction(weka.core.Instance inst,
int classVal)
public double[] getVotesForInstance(weka.core.Instance inst)
Classifierinst - the instance to be classifiedprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic boolean isRandomizable()
ClassifierCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.