public class Perceptron extends AbstractClassifier
Performs classic perceptron multiclass learning incrementally.
Parameters:
Modifier and Type | Field and Description |
---|---|
FloatOption |
learningRatioOption |
protected int |
numberAttributes |
protected int |
numberClasses |
protected int |
numberDetections |
protected boolean |
reset |
protected double[][] |
weightAttribute |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
Perceptron() |
Modifier and Type | Method and Description |
---|---|
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
int |
getNumberAttributes() |
int |
getNumberClasses() |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
double[][] |
getWeights() |
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
double |
prediction(weka.core.Instance inst,
int classVal) |
void |
resetLearningImpl()
Resets this classifier.
|
void |
setWeights(double[][] w) |
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public FloatOption learningRatioOption
protected double[][] weightAttribute
protected boolean reset
protected int numberAttributes
protected int numberClasses
protected int numberDetections
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingpublic void setWeights(double[][] w)
public double[][] getWeights()
public int getNumberAttributes()
public int getNumberClasses()
public double prediction(weka.core.Instance inst, int classVal)
public double[] getVotesForInstance(weka.core.Instance inst)
Classifier
inst
- the instance to be classifiedprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentpublic boolean isRandomizable()
Classifier
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.