public class kNNwithPAWandADWIN extends kNN
Valid options are:
-k number of neighbours
Modifier and Type | Field and Description |
---|---|
protected int |
marker |
protected double |
prob |
protected int |
time |
protected ArrayList<Integer> |
timeStamp |
kOption, limitOption, nearestNeighbourSearchOption, window
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
kNNwithPAWandADWIN() |
Modifier and Type | Method and Description |
---|---|
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
String |
getPurposeString()
Gets the purpose of this object
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
getModelMeasurementsImpl, getVotesForInstance, setModelContext
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class kNN
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class kNN
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class kNN
inst
- the instance to be used for trainingpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class kNN
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentpublic boolean isRandomizable()
Classifier
isRandomizable
in interface Classifier
isRandomizable
in class kNN
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.