public class LimAttClassifier extends AbstractClassifier
@article{BifetFHP10, author = {Albert Bifet and Eibe Frank and Geoffrey Holmes and Bernhard Pfahringer}, title = {Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking}, journal = {Journal of Machine Learning Research - Proceedings Track}, volume = {13}, year = {2010}, pages = {225-240} }
Modifier and Type | Class and Description |
---|---|
class |
LimAttClassifier.CombinationGenerator |
Modifier and Type | Field and Description |
---|---|
protected ADWIN[] |
ADError |
FlagOption |
adwinReplaceWorstClassifierOption |
ClassOption |
baseLearnerOption |
FlagOption |
bigTreesOption |
FloatOption |
deltaAdwinOption |
protected Classifier[] |
ensemble |
protected boolean |
initClassifiers |
IntOption |
initialNumInstancesOption |
protected boolean |
initMatrixCodes |
FloatOption |
learningRatioOption |
protected int[][] |
matrixCodes |
IntOption |
numAttributesOption |
protected int |
numberAttributes |
protected int |
numberOfChangesDetected |
IntOption |
numEnsemblePruningOption |
protected int |
numInstances |
FloatOption |
oddsOffsetOption |
FloatOption |
penaltyFactorOption |
FlagOption |
pruneOption |
protected boolean |
reset |
protected double[][] |
weightAttribute |
FloatOption |
weightShrinkOption |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
LimAttClassifier() |
Modifier and Type | Method and Description |
---|---|
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
Classifier[] |
getSubClassifiers()
Gets the classifiers of this ensemble.
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
double[] |
getVotesForInstancePerceptron(double[][] votesEnsemble,
int[] bestClassifiers,
int numClasses) |
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
double |
prediction(double[][] votes,
int classVal) |
double |
predictionPruning(double[][] votes,
int[] bestClassifiers,
int classVal) |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
void |
trainOnInstanceImplPerceptron(int numClasses,
int actualClass,
double[][] votes) |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public ClassOption baseLearnerOption
public IntOption numAttributesOption
public FloatOption weightShrinkOption
public FloatOption deltaAdwinOption
public FloatOption oddsOffsetOption
public FlagOption pruneOption
public FlagOption bigTreesOption
public IntOption numEnsemblePruningOption
public FlagOption adwinReplaceWorstClassifierOption
protected Classifier[] ensemble
protected ADWIN[] ADError
protected int numberOfChangesDetected
protected int[][] matrixCodes
protected boolean initMatrixCodes
protected boolean initClassifiers
protected int numberAttributes
protected int numInstances
public FloatOption learningRatioOption
public FloatOption penaltyFactorOption
public IntOption initialNumInstancesOption
protected double[][] weightAttribute
protected boolean reset
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingpublic double[] getVotesForInstance(weka.core.Instance inst)
Classifier
inst
- the instance to be classifiedpublic boolean isRandomizable()
Classifier
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public Classifier[] getSubClassifiers()
Classifier
getSubClassifiers
in interface Classifier
getSubClassifiers
in class AbstractClassifier
public void trainOnInstanceImplPerceptron(int numClasses, int actualClass, double[][] votes)
public double predictionPruning(double[][] votes, int[] bestClassifiers, int classVal)
public double prediction(double[][] votes, int classVal)
public double[] getVotesForInstancePerceptron(double[][] votesEnsemble, int[] bestClassifiers, int numClasses)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.