public class LimAttClassifier extends AbstractClassifier
@article{BifetFHP10,
author = {Albert Bifet and
Eibe Frank and
Geoffrey Holmes and
Bernhard Pfahringer},
title = {Accurate Ensembles for Data Streams: Combining Restricted
Hoeffding Trees using Stacking},
journal = {Journal of Machine Learning Research - Proceedings Track},
volume = {13},
year = {2010},
pages = {225-240}
}
| Modifier and Type | Class and Description |
|---|---|
class |
LimAttClassifier.CombinationGenerator |
| Modifier and Type | Field and Description |
|---|---|
protected ADWIN[] |
ADError |
FlagOption |
adwinReplaceWorstClassifierOption |
ClassOption |
baseLearnerOption |
FlagOption |
bigTreesOption |
FloatOption |
deltaAdwinOption |
protected Classifier[] |
ensemble |
protected boolean |
initClassifiers |
IntOption |
initialNumInstancesOption |
protected boolean |
initMatrixCodes |
FloatOption |
learningRatioOption |
protected int[][] |
matrixCodes |
IntOption |
numAttributesOption |
protected int |
numberAttributes |
protected int |
numberOfChangesDetected |
IntOption |
numEnsemblePruningOption |
protected int |
numInstances |
FloatOption |
oddsOffsetOption |
FloatOption |
penaltyFactorOption |
FlagOption |
pruneOption |
protected boolean |
reset |
protected double[][] |
weightAttribute |
FloatOption |
weightShrinkOption |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
LimAttClassifier() |
| Modifier and Type | Method and Description |
|---|---|
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
Classifier[] |
getSubClassifiers()
Gets the classifiers of this ensemble.
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
double[] |
getVotesForInstancePerceptron(double[][] votesEnsemble,
int[] bestClassifiers,
int numClasses) |
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
double |
prediction(double[][] votes,
int classVal) |
double |
predictionPruning(double[][] votes,
int[] bestClassifiers,
int classVal) |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
void |
trainOnInstanceImplPerceptron(int numClasses,
int actualClass,
double[][] votes) |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic ClassOption baseLearnerOption
public IntOption numAttributesOption
public FloatOption weightShrinkOption
public FloatOption deltaAdwinOption
public FloatOption oddsOffsetOption
public FlagOption pruneOption
public FlagOption bigTreesOption
public IntOption numEnsemblePruningOption
public FlagOption adwinReplaceWorstClassifierOption
protected Classifier[] ensemble
protected ADWIN[] ADError
protected int numberOfChangesDetected
protected int[][] matrixCodes
protected boolean initMatrixCodes
protected boolean initClassifiers
protected int numberAttributes
protected int numInstances
public FloatOption learningRatioOption
public FloatOption penaltyFactorOption
public IntOption initialNumInstancesOption
protected double[][] weightAttribute
protected boolean reset
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingpublic double[] getVotesForInstance(weka.core.Instance inst)
Classifierinst - the instance to be classifiedpublic boolean isRandomizable()
Classifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic Classifier[] getSubClassifiers()
ClassifiergetSubClassifiers in interface ClassifiergetSubClassifiers in class AbstractClassifierpublic void trainOnInstanceImplPerceptron(int numClasses,
int actualClass,
double[][] votes)
public double predictionPruning(double[][] votes,
int[] bestClassifiers,
int classVal)
public double prediction(double[][] votes,
int classVal)
public double[] getVotesForInstancePerceptron(double[][] votesEnsemble,
int[] bestClassifiers,
int numClasses)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.