public class LimAttHoeffdingTree extends HoeffdingTree
@article{BifetFHP10, author = {Albert Bifet and Eibe Frank and Geoffrey Holmes and Bernhard Pfahringer}, title = {Accurate Ensembles for Data Streams: Combining Restricted Hoeffding Trees using Stacking}, journal = {Journal of Machine Learning Research - Proceedings Track}, volume = {13}, year = {2010}, pages = {225-240} }
Modifier and Type | Class and Description |
---|---|
static class |
LimAttHoeffdingTree.LearningNodeNB |
static class |
LimAttHoeffdingTree.LearningNodeNBAdaptive |
static class |
LimAttHoeffdingTree.LimAttLearningNode |
HoeffdingTree.ActiveLearningNode, HoeffdingTree.FoundNode, HoeffdingTree.InactiveLearningNode, HoeffdingTree.LearningNode, HoeffdingTree.Node, HoeffdingTree.SplitNode
Modifier and Type | Field and Description |
---|---|
protected int[] |
listAttributes |
activeLeafByteSizeEstimate, activeLeafNodeCount, binarySplitsOption, byteSizeEstimateOverheadFraction, decisionNodeCount, gracePeriodOption, growthAllowed, inactiveLeafByteSizeEstimate, inactiveLeafNodeCount, leafpredictionOption, maxByteSizeOption, memoryEstimatePeriodOption, nbThresholdOption, nominalEstimatorOption, noPrePruneOption, numericEstimatorOption, removePoorAttsOption, splitConfidenceOption, splitCriterionOption, stopMemManagementOption, tieThresholdOption, treeRoot
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
LimAttHoeffdingTree() |
Modifier and Type | Method and Description |
---|---|
String |
getPurposeString()
Gets the purpose of this object
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
protected HoeffdingTree.LearningNode |
newLearningNode(double[] initialClassObservations) |
void |
setlistAttributes(int[] list) |
activateLearningNode, attemptToSplit, calcByteSize, computeHoeffdingBound, deactivateAllLeaves, deactivateLearningNode, enforceTrackerLimit, estimateModelByteSizes, findLearningNodes, findLearningNodes, getModelDescription, getModelMeasurementsImpl, getVotesForInstance, measureByteSize, measureTreeDepth, newLearningNode, newNominalClassObserver, newNumericClassObserver, newSplitNode, newSplitNode, resetLearningImpl, trainOnInstanceImpl
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class HoeffdingTree
public void setlistAttributes(int[] list)
protected HoeffdingTree.LearningNode newLearningNode(double[] initialClassObservations)
newLearningNode
in class HoeffdingTree
public boolean isRandomizable()
Classifier
isRandomizable
in interface Classifier
isRandomizable
in class HoeffdingTree
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.