public class ORTO extends AbstractClassifier implements Regressor
Modifier and Type | Class and Description |
---|---|
static class |
ORTO.ActiveLearningNode |
static class |
ORTO.InnerNode |
static class |
ORTO.Node |
static class |
ORTO.OptionNode |
static class |
ORTO.ORTOPerceptron
A Perceptron classifier modified to conform to the specifications of Ikonomovska et al.
|
static class |
ORTO.SplitNode |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
ORTO() |
Modifier and Type | Method and Description |
---|---|
int |
calcByteSize() |
protected void |
checkRoot() |
static double |
computeHoeffdingBound(double range,
double confidence,
double n) |
protected ORTO.Node |
findWorstOption() |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
protected AttributeClassObserver |
newNumericClassObserver() |
protected void |
removeExcessTrees() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Method for updating (training) the model using a new instance
|
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
protected ORTO.Node treeRoot
protected int maxDepth
protected double inactiveLeafByteSizeEstimate
protected double activeLeafByteSizeEstimate
protected double byteSizeEstimateOverheadFraction
protected ArrayList<ORTO.InnerNode> nodesToAdapt
protected boolean Adaptable
protected double initLearnRate
protected double learnRateDecay
public int maxID
public FloatOption PageHinckleyAlphaOption
public IntOption PageHinckleyThresholdOption
public FloatOption AlternateTreeFadingFactorOption
public IntOption AlternateTreeTMinOption
public IntOption AlternateTreeTimeOption
public FloatOption LearningRatioOption
public FlagOption LearningRatioDecayOrConstOption
public IntOption MaxTreesOption
public IntOption MaxOptionLevelOption
public FloatOption OptionDecayFactorOption
public ClassOption splitCriterionOption
public ClassOption numericEstimatorOption
public IntOption gracePeriodOption
public FloatOption splitConfidenceOption
public FloatOption tieThresholdOption
public FlagOption removePoorAttsOption
public MultiChoiceOption OptionNodeAggregationOption
public FloatOption OptionFadingFactorOption
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public boolean isRandomizable()
Classifier
isRandomizable
in interface Classifier
protected void checkRoot()
protected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public int calcByteSize()
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentpublic double[] getVotesForInstance(weka.core.Instance inst)
Classifier
getVotesForInstance
in interface Classifier
inst
- the instance to be classifiedpublic void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingprotected AttributeClassObserver newNumericClassObserver()
public static double computeHoeffdingBound(double range, double confidence, double n)
protected ORTO.Node findWorstOption()
protected void removeExcessTrees()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.