public class ORTO extends AbstractClassifier implements Regressor
| Modifier and Type | Class and Description |
|---|---|
static class |
ORTO.ActiveLearningNode |
static class |
ORTO.InnerNode |
static class |
ORTO.Node |
static class |
ORTO.OptionNode |
static class |
ORTO.ORTOPerceptron
A Perceptron classifier modified to conform to the specifications of Ikonomovska et al.
|
static class |
ORTO.SplitNode |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
ORTO() |
| Modifier and Type | Method and Description |
|---|---|
int |
calcByteSize() |
protected void |
checkRoot() |
static double |
computeHoeffdingBound(double range,
double confidence,
double n) |
protected ORTO.Node |
findWorstOption() |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
protected AttributeClassObserver |
newNumericClassObserver() |
protected void |
removeExcessTrees() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Method for updating (training) the model using a new instance
|
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizeprotected ORTO.Node treeRoot
protected int maxDepth
protected double inactiveLeafByteSizeEstimate
protected double activeLeafByteSizeEstimate
protected double byteSizeEstimateOverheadFraction
protected ArrayList<ORTO.InnerNode> nodesToAdapt
protected boolean Adaptable
protected double initLearnRate
protected double learnRateDecay
public int maxID
public FloatOption PageHinckleyAlphaOption
public IntOption PageHinckleyThresholdOption
public FloatOption AlternateTreeFadingFactorOption
public IntOption AlternateTreeTMinOption
public IntOption AlternateTreeTimeOption
public FloatOption LearningRatioOption
public FlagOption LearningRatioDecayOrConstOption
public IntOption MaxTreesOption
public IntOption MaxOptionLevelOption
public FloatOption OptionDecayFactorOption
public ClassOption splitCriterionOption
public ClassOption numericEstimatorOption
public IntOption gracePeriodOption
public FloatOption splitConfidenceOption
public FloatOption tieThresholdOption
public FlagOption removePoorAttsOption
public MultiChoiceOption OptionNodeAggregationOption
public FloatOption OptionFadingFactorOption
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic boolean isRandomizable()
ClassifierisRandomizable in interface Classifierprotected void checkRoot()
protected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic int calcByteSize()
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic double[] getVotesForInstance(weka.core.Instance inst)
ClassifiergetVotesForInstance in interface Classifierinst - the instance to be classifiedpublic void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingprotected AttributeClassObserver newNumericClassObserver()
public static double computeHoeffdingBound(double range,
double confidence,
double n)
protected ORTO.Node findWorstOption()
protected void removeExcessTrees()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.