public class AnyOutCore extends ClusTree
Modifier and Type | Field and Description |
---|---|
IntOption |
confidenceChoiceOption |
IntOption |
confKOption |
IntOption |
oScoreKOption |
FloatOption |
threshholdOption |
IntOption |
trainingSetSizeOption |
FlagOption |
UseMeanScoreOption |
breadthFirstStrat, horizonOption, maxHeight, maxHeightOption, negLambda, root
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
AnyOutCore() |
Modifier and Type | Method and Description |
---|---|
double |
getConfidence(int id) |
double |
getOutlierScore(int id) |
void |
improveObjectOnce(int objectId) |
void |
initObject(int objectId,
double[] features) |
boolean |
isOutlier(int id) |
void |
learnObject(double[] features) |
boolean |
moreImprovementsPossible(int objectId,
double depthPercentage) |
void |
removeObject(int objectId) |
void |
resetLearning() |
void |
train(DataSet trainingSet) |
getClustering, getClusteringResult, getDefaultHeight, getHeight, getMicroClusteringResult, getModelDescription, getModelMeasurementsImpl, getNumRootSplits, getVotesForInstance, implementsMicroClusterer, insert, isRandomizable, resetLearningImpl, trainOnInstanceImpl
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public IntOption trainingSetSizeOption
public IntOption oScoreKOption
public IntOption confKOption
public IntOption confidenceChoiceOption
public FlagOption UseMeanScoreOption
public FloatOption threshholdOption
public void resetLearning()
resetLearning
in interface Clusterer
resetLearning
in class AbstractClusterer
public void train(DataSet trainingSet)
public void initObject(int objectId, double[] features)
public void learnObject(double[] features)
public void removeObject(int objectId)
public boolean moreImprovementsPossible(int objectId, double depthPercentage)
public void improveObjectOnce(int objectId)
public boolean isOutlier(int id)
public double getOutlierScore(int id)
public double getConfidence(int id)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.