public class AnyOutCore extends ClusTree
| Modifier and Type | Field and Description |
|---|---|
IntOption |
confidenceChoiceOption |
IntOption |
confKOption |
IntOption |
oScoreKOption |
FloatOption |
threshholdOption |
IntOption |
trainingSetSizeOption |
FlagOption |
UseMeanScoreOption |
breadthFirstStrat, horizonOption, maxHeight, maxHeightOption, negLambda, rootclustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
AnyOutCore() |
| Modifier and Type | Method and Description |
|---|---|
double |
getConfidence(int id) |
double |
getOutlierScore(int id) |
void |
improveObjectOnce(int objectId) |
void |
initObject(int objectId,
double[] features) |
boolean |
isOutlier(int id) |
void |
learnObject(double[] features) |
boolean |
moreImprovementsPossible(int objectId,
double depthPercentage) |
void |
removeObject(int objectId) |
void |
resetLearning() |
void |
train(DataSet trainingSet) |
getClustering, getClusteringResult, getDefaultHeight, getHeight, getMicroClusteringResult, getModelDescription, getModelMeasurementsImpl, getNumRootSplits, getVotesForInstance, implementsMicroClusterer, insert, isRandomizable, resetLearningImpl, trainOnInstanceImplcontextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic IntOption trainingSetSizeOption
public IntOption oScoreKOption
public IntOption confKOption
public IntOption confidenceChoiceOption
public FlagOption UseMeanScoreOption
public FloatOption threshholdOption
public void resetLearning()
resetLearning in interface ClustererresetLearning in class AbstractClustererpublic void train(DataSet trainingSet)
public void initObject(int objectId,
double[] features)
public void learnObject(double[] features)
public void removeObject(int objectId)
public boolean moreImprovementsPossible(int objectId,
double depthPercentage)
public void improveObjectOnce(int objectId)
public boolean isOutlier(int id)
public double getOutlierScore(int id)
public double getConfidence(int id)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.