public class OCBoost extends AbstractClassifier
Pelossof et al. presented Online Coordinate Boosting, a new online boosting algorithm for adapting the weights of a boosted classifier, which yields a closer approximation to Freund and Schapire’s AdaBoost algorithm. The weight update procedure is derived by minimizing AdaBoost’s loss when viewed in an incremental form. This boosting method may be reduced to a form similar to Oza and Russell’s algorithm.
See details in:
Raphael Pelossof, Michael Jones, Ilia Vovsha, and Cynthia Rudin.
Online coordinate boosting. 2008.
Example:
OCBoost -l HoeffdingTreeNBAdaptive -e 0.5
Parameters:
Modifier and Type | Field and Description |
---|---|
protected double[] |
alpha |
protected double[] |
alphainc |
ClassOption |
baseLearnerOption |
protected Classifier[] |
ensemble |
IntOption |
ensembleSizeOption |
protected double[] |
pineg |
protected double[] |
pipos |
FloatOption |
smoothingOption |
protected double[][] |
wneg |
protected double[][] |
wpos |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
OCBoost() |
Modifier and Type | Method and Description |
---|---|
protected double |
getEnsembleMemberWeight(int i) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
Classifier[] |
getSubClassifiers()
Gets the classifiers of this ensemble.
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public ClassOption baseLearnerOption
public IntOption ensembleSizeOption
public FloatOption smoothingOption
protected Classifier[] ensemble
protected double[] alpha
protected double[] alphainc
protected double[] pipos
protected double[] pineg
protected double[][] wpos
protected double[][] wneg
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingprotected double getEnsembleMemberWeight(int i)
public double[] getVotesForInstance(weka.core.Instance inst)
Classifier
inst
- the instance to be classifiedpublic boolean isRandomizable()
Classifier
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public Classifier[] getSubClassifiers()
Classifier
getSubClassifiers
in interface Classifier
getSubClassifiers
in class AbstractClassifier
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.