public class OnlineAccuracyUpdatedEnsemble extends AbstractClassifier
| Modifier and Type | Class and Description | 
|---|---|
protected class  | 
OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory  | 
| Modifier and Type | Field and Description | 
|---|---|
protected OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory | 
candidate
Candidate classifier. 
 | 
protected long[] | 
classDistributions
Class distributions. 
 | 
protected int[] | 
currentWindow
Current window of instance class values. 
 | 
protected OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory[] | 
ensemble
Ensemble classifiers. 
 | 
ClassOption | 
learnerOption
Type of classifier to use as a component classifier. 
 | 
FlagOption | 
linearOption
Determines whether additional information should be sent to the output. 
 | 
IntOption | 
maxByteSizeOption
Determines the maximum size of model (evaluated after every chunk). 
 | 
IntOption | 
memberCountOption
Number of component classifiers. 
 | 
protected double | 
mse_r
The mean square residual in a given moment, based on a window of latest examples. 
 | 
protected int | 
processedInstances
Number of processed examples. 
 | 
FlagOption | 
verboseOption
Determines whether additional information should be sent to the output. 
 | 
protected double[][] | 
weights
The weights of stored classifiers. 
 | 
protected int | 
windowSize
Window size. 
 | 
FloatOption | 
windowSizeOption
Chunk size. 
 | 
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description | 
|---|
OnlineAccuracyUpdatedEnsemble()  | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
addToStored(OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory newClassifier,
           double newClassifiersWeight)
Adds a classifier to the storage. 
 | 
protected void | 
computeMseR()
Computes the MSEr threshold. 
 | 
protected double | 
computeWeight(int i,
             weka.core.Instance example)
Computes the weight of a learner before training a given example. 
 | 
protected void | 
createNewClassifier(weka.core.Instance inst)
Processes a chunk. 
 | 
protected void | 
enforceMemoryLimit()
Checks if the memory limit is exceeded and if so prunes the classifiers in the ensemble. 
 | 
void | 
getModelDescription(StringBuilder out,
                   int indent)
Returns a string representation of the model. 
 | 
protected Measurement[] | 
getModelMeasurementsImpl()
Adds ensemble weights to the measurements. 
 | 
Classifier[] | 
getSubClassifiers()
Gets the classifiers of this ensemble. 
 | 
double[] | 
getVotesForInstance(weka.core.Instance inst)
Predicts a class for an example. 
 | 
boolean | 
isRandomizable()
Determines whether the classifier is randomizable. 
 | 
void | 
prepareForUseImpl(TaskMonitor monitor,
                 ObjectRepository repository)
This method describes the implementation of how to prepare this object for use. 
 | 
void | 
resetLearningImpl()
Resets this classifier. 
 | 
void | 
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance. 
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.  | 
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic ClassOption learnerOption
public IntOption memberCountOption
public FloatOption windowSizeOption
public IntOption maxByteSizeOption
public FlagOption verboseOption
public FlagOption linearOption
protected double[][] weights
protected long[] classDistributions
protected OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory[] ensemble
protected int processedInstances
protected OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory candidate
protected int[] currentWindow
protected double mse_r
protected int windowSize
public void prepareForUseImpl(TaskMonitor monitor, ObjectRepository repository)
AbstractOptionHandlerprepareForUseImpl
 and not prepareForUse since
 prepareForUse calls prepareForUseImpl.prepareForUseImpl in class AbstractClassifiermonitor - the TaskMonitor to userepository - the ObjectRepository to usepublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingpublic boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
inst - the instance to be classifiedpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic Classifier[] getSubClassifiers()
ClassifiergetSubClassifiers in interface ClassifiergetSubClassifiers in class AbstractClassifierprotected void createNewClassifier(weka.core.Instance inst)
inst - New exampleprotected void enforceMemoryLimit()
protected void computeMseR()
protected double computeWeight(int i,
                   weka.core.Instance example)
i - the identifier (in terms of array learners) 
 of the classifier for which the weight is supposed to be computedexample - the newest exampleprotected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl in class AbstractClassifierprotected void addToStored(OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory newClassifier, double newClassifiersWeight)
newClassifier - The classifier to add.newClassifiersWeight - The new classifiers weight.Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.