public class OzaBoost extends AbstractClassifier
See details in:
N. Oza and S. Russell. Online bagging and boosting.
In Artificial Intelligence and Statistics 2001, pages 105–112. Morgan
Kaufmann, 2001.
For the boosting method, Oza and Russell note that the weighting procedure of AdaBoost actually divides the total example weight into two halves – half of the weight is assigned to the correctly classified examples, and the other half goes to the misclassified examples. They use the Poisson distribution for deciding the random probability that an example is used for training, only this time the parameter changes according to the boosting weight of the example as it is passed through each model in sequence.
Parameters:
Modifier and Type | Field and Description |
---|---|
ClassOption |
baseLearnerOption |
protected Classifier[] |
ensemble |
IntOption |
ensembleSizeOption |
FlagOption |
pureBoostOption |
protected double[] |
scms |
protected double[] |
swms |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
OzaBoost() |
Modifier and Type | Method and Description |
---|---|
protected double |
getEnsembleMemberWeight(int i) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
Classifier[] |
getSubClassifiers()
Gets the classifiers of this ensemble.
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public ClassOption baseLearnerOption
public IntOption ensembleSizeOption
public FlagOption pureBoostOption
protected Classifier[] ensemble
protected double[] scms
protected double[] swms
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingprotected double getEnsembleMemberWeight(int i)
public double[] getVotesForInstance(weka.core.Instance inst)
Classifier
inst
- the instance to be classifiedpublic boolean isRandomizable()
Classifier
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public Classifier[] getSubClassifiers()
Classifier
getSubClassifiers
in interface Classifier
getSubClassifiers
in class AbstractClassifier
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.