public class OzaBoostAdwin extends AbstractClassifier
| Modifier and Type | Field and Description |
|---|---|
protected ADWIN[] |
ADError |
ClassOption |
baseLearnerOption |
FloatOption |
deltaAdwinOption |
protected Classifier[] |
ensemble |
IntOption |
ensembleSizeOption |
protected boolean |
initKm1 |
protected boolean |
initMatrixCodes |
protected int |
Km1 |
protected double |
logKm1 |
protected int[][] |
matrixCodes |
protected int |
numberOfChangesDetected |
FlagOption |
outputCodesOption |
FlagOption |
pureBoostOption |
FlagOption |
sammeOption |
protected double[] |
scms |
protected double[] |
swms |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
OzaBoostAdwin() |
| Modifier and Type | Method and Description |
|---|---|
protected double |
getEnsembleMemberWeight(int i) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
Classifier[] |
getSubClassifiers()
Gets the classifiers of this ensemble.
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
double[] |
getVotesForInstanceBinary(weka.core.Instance inst) |
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic ClassOption baseLearnerOption
public IntOption ensembleSizeOption
public FlagOption pureBoostOption
public FloatOption deltaAdwinOption
public FlagOption outputCodesOption
public FlagOption sammeOption
protected Classifier[] ensemble
protected double[] scms
protected double[] swms
protected ADWIN[] ADError
protected int numberOfChangesDetected
protected int[][] matrixCodes
protected boolean initMatrixCodes
protected double logKm1
protected int Km1
protected boolean initKm1
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingprotected double getEnsembleMemberWeight(int i)
public double[] getVotesForInstance(weka.core.Instance inst)
Classifierinst - the instance to be classifiedpublic double[] getVotesForInstanceBinary(weka.core.Instance inst)
public boolean isRandomizable()
Classifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic Classifier[] getSubClassifiers()
ClassifiergetSubClassifiers in interface ClassifiergetSubClassifiers in class AbstractClassifierCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.