public class TemporallyAugmentedClassifier extends AbstractClassifier
This enables a classifier to exploit potentially present auto-correlation
Parameters:
| Modifier and Type | Field and Description |
|---|---|
protected Classifier |
baseLearner |
ClassOption |
baseLearnerOption |
protected weka.core.Instances |
header |
FlagOption |
labelDelayOption |
IntOption |
numOldLabelsOption |
protected double[] |
oldLabels |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
TemporallyAugmentedClassifier() |
| Modifier and Type | Method and Description |
|---|---|
void |
addOldLabel(double newPrediction) |
weka.core.Instance |
extendWithOldLabels(weka.core.Instance instance) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance instance)
Predicts the class memberships for a given instance.
|
void |
initHeader(weka.core.Instances dataset) |
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
resetLearningImpl()
Resets this classifier.
|
String |
toString()
Returns a description of the object.
|
void |
trainOnInstanceImpl(weka.core.Instance instance)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSizeclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic ClassOption baseLearnerOption
public IntOption numOldLabelsOption
protected Classifier baseLearner
protected double[] oldLabels
protected weka.core.Instances header
public FlagOption labelDelayOption
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance instance)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinstance - the instance to be used for trainingpublic void addOldLabel(double newPrediction)
public void initHeader(weka.core.Instances dataset)
public weka.core.Instance extendWithOldLabels(weka.core.Instance instance)
public double[] getVotesForInstance(weka.core.Instance instance)
Classifierinstance - the instance to be classifiedpublic boolean isRandomizable()
Classifierprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic String toString()
AbstractMOAObjecttoString in class AbstractMOAObjectCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.