public class TemporallyAugmentedClassifier extends AbstractClassifier
This enables a classifier to exploit potentially present auto-correlation
Parameters:
| Modifier and Type | Field and Description | 
|---|---|
| protected Classifier | baseLearner | 
| ClassOption | baseLearnerOption | 
| protected weka.core.Instances | header | 
| FlagOption | labelDelayOption | 
| IntOption | numOldLabelsOption | 
| protected double[] | oldLabels | 
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description | 
|---|
| TemporallyAugmentedClassifier() | 
| Modifier and Type | Method and Description | 
|---|---|
| void | addOldLabel(double newPrediction) | 
| weka.core.Instance | extendWithOldLabels(weka.core.Instance instance) | 
| void | getModelDescription(StringBuilder out,
                   int indent)Returns a string representation of the model. | 
| protected Measurement[] | getModelMeasurementsImpl()Gets the current measurements of this classifier. The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. | 
| String | getPurposeString()Gets the purpose of this object | 
| double[] | getVotesForInstance(weka.core.Instance instance)Predicts the class memberships for a given instance. | 
| void | initHeader(weka.core.Instances dataset) | 
| boolean | isRandomizable()Gets whether this classifier needs a random seed. | 
| void | resetLearningImpl()Resets this classifier. | 
| String | toString()Returns a description of the object. | 
| void | trainOnInstanceImpl(weka.core.Instance instance)Trains this classifier incrementally using the given instance. The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. | 
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSizeclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic ClassOption baseLearnerOption
public IntOption numOldLabelsOption
protected Classifier baseLearner
protected double[] oldLabels
protected weka.core.Instances header
public FlagOption labelDelayOption
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance instance)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinstance - the instance to be used for trainingpublic void addOldLabel(double newPrediction)
public void initHeader(weka.core.Instances dataset)
public weka.core.Instance extendWithOldLabels(weka.core.Instance instance)
public double[] getVotesForInstance(weka.core.Instance instance)
Classifierinstance - the instance to be classifiedpublic boolean isRandomizable()
Classifierprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic String toString()
AbstractMOAObjecttoString in class AbstractMOAObjectCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.