public class WeightedMajorityAlgorithm extends AbstractClassifier
Modifier and Type | Field and Description |
---|---|
FloatOption |
betaOption |
protected Classifier[] |
ensemble |
protected double[] |
ensembleWeights |
FloatOption |
gammaOption |
ListOption |
learnerListOption |
FlagOption |
pruneOption |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
WeightedMajorityAlgorithm() |
Modifier and Type | Method and Description |
---|---|
void |
discardModel(int index) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
Classifier[] |
getSubClassifiers()
Gets the classifiers of this ensemble.
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository)
This method describes the implementation of how to prepare this object for use.
|
protected int |
removePoorestModelBytes() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public ListOption learnerListOption
public FloatOption betaOption
public FloatOption gammaOption
public FlagOption pruneOption
protected Classifier[] ensemble
protected double[] ensembleWeights
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void prepareForUseImpl(TaskMonitor monitor, ObjectRepository repository)
AbstractOptionHandler
prepareForUseImpl
and not prepareForUse
since
prepareForUse
calls prepareForUseImpl
.prepareForUseImpl
in class AbstractClassifier
monitor
- the TaskMonitor to userepository
- the ObjectRepository to usepublic void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingpublic double[] getVotesForInstance(weka.core.Instance inst)
Classifier
inst
- the instance to be classifiedpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public boolean isRandomizable()
Classifier
public Classifier[] getSubClassifiers()
Classifier
getSubClassifiers
in interface Classifier
getSubClassifiers
in class AbstractClassifier
public void discardModel(int index)
protected int removePoorestModelBytes()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.