public class WEKAClassifier extends AbstractClassifier
| Modifier and Type | Field and Description |
|---|---|
WEKAClassOption |
baseLearnerOption |
protected weka.classifiers.Classifier |
classifier |
protected weka.core.Instances |
instancesBuffer |
protected boolean |
isBufferStoring |
protected boolean |
isClassificationEnabled |
protected int |
numberInstances |
IntOption |
sampleFrequencyOption |
IntOption |
widthInitOption |
IntOption |
widthOption |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
WEKAClassifier() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier() |
void |
createWekaClassifier(String[] options) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic WEKAClassOption baseLearnerOption
public IntOption widthOption
public IntOption widthInitOption
public IntOption sampleFrequencyOption
protected weka.classifiers.Classifier classifier
protected int numberInstances
protected weka.core.Instances instancesBuffer
protected boolean isClassificationEnabled
protected boolean isBufferStoring
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingpublic void buildClassifier()
public double[] getVotesForInstance(weka.core.Instance inst)
Classifierinst - the instance to be classifiedpublic boolean isRandomizable()
Classifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.