public class Perceptron extends AbstractClassifier implements Regressor
| Modifier and Type | Field and Description |
|---|---|
protected double |
accumulatedError |
FlagOption |
constantLearningRatioDecayOption |
protected double |
fadingFactor |
FloatOption |
fadingFactorOption |
protected boolean |
initialisePerceptron |
protected double |
learningRateDecay |
FloatOption |
learningRateDecayOption |
protected double |
learningRatio |
FloatOption |
learningRatioOption |
DoubleVector |
perceptronattributeStatistics |
protected int |
perceptronInstancesSeen |
protected double |
perceptronsumY |
protected int |
perceptronYSeen |
DoubleVector |
squaredperceptronattributeStatistics |
protected double |
squaredperceptronsumY |
protected double[] |
weightAttribute |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
Perceptron() |
Perceptron(Perceptron p) |
| Modifier and Type | Method and Description |
|---|---|
double |
computeSD(double squaredVal,
double val,
int size) |
double |
getCurrentError() |
int |
getInstancesSeen() |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
double[] |
getWeights() |
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
double[] |
normalizedInstance(weka.core.Instance inst) |
double |
normalizedPrediction(weka.core.Instance inst) |
void |
normalizeWeights() |
double |
prediction(double[] instanceValues) |
void |
reset() |
void |
resetError() |
void |
resetLearningImpl()
A method to reset the model
|
void |
setInstancesSeen(int pInstancesSeen) |
void |
setLearningRatio(double learningRatio) |
void |
setWeights(double[] w) |
void |
trainOnInstanceImpl(weka.core.Instance inst)
Update the model using the provided instance
|
double |
updateWeights(weka.core.Instance inst,
double learningRatio) |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic FlagOption constantLearningRatioDecayOption
public FloatOption learningRatioOption
public FloatOption learningRateDecayOption
public FloatOption fadingFactorOption
protected double fadingFactor
protected double learningRatio
protected double learningRateDecay
protected double[] weightAttribute
public DoubleVector perceptronattributeStatistics
public DoubleVector squaredperceptronattributeStatistics
protected int perceptronInstancesSeen
protected int perceptronYSeen
protected double accumulatedError
protected boolean initialisePerceptron
protected double perceptronsumY
protected double squaredperceptronsumY
public Perceptron()
public Perceptron(Perceptron p)
public void setWeights(double[] w)
public double[] getWeights()
public int getInstancesSeen()
public void setInstancesSeen(int pInstancesSeen)
public void resetLearningImpl()
resetLearningImpl in class AbstractClassifierpublic void reset()
public void resetError()
public void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingpublic double normalizedPrediction(weka.core.Instance inst)
public double prediction(double[] instanceValues)
public double[] normalizedInstance(weka.core.Instance inst)
public double computeSD(double squaredVal,
double val,
int size)
public double updateWeights(weka.core.Instance inst,
double learningRatio)
public void normalizeWeights()
public boolean isRandomizable()
ClassifierisRandomizable in interface Classifierpublic double[] getVotesForInstance(weka.core.Instance inst)
ClassifiergetVotesForInstance in interface Classifierinst - the instance to be classifiedprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic void setLearningRatio(double learningRatio)
public double getCurrentError()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.