public class TargetMean extends AbstractClassifier implements Regressor
Modifier and Type | Field and Description |
---|---|
protected double |
errorSum |
FloatOption |
fadingErrorFactorOption |
protected long |
n |
protected double |
nError |
protected double |
sum |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
TargetMean() |
TargetMean(TargetMean t) |
Modifier and Type | Method and Description |
---|---|
double |
getCurrentError() |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
reset(double currentMean,
long numberOfInstances) |
void |
resetError() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
protected void |
updateAccumulatedError(weka.core.Instance inst) |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
protected long n
protected double sum
protected double errorSum
protected double nError
public FloatOption fadingErrorFactorOption
public TargetMean(TargetMean t)
public TargetMean()
public boolean isRandomizable()
Classifier
isRandomizable
in interface Classifier
public double[] getVotesForInstance(weka.core.Instance inst)
Classifier
getVotesForInstance
in interface Classifier
inst
- the instance to be classifiedpublic void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
public void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingprotected void updateAccumulatedError(weka.core.Instance inst)
protected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentpublic void reset(double currentMean, long numberOfInstances)
public double getCurrentError()
public void resetError()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.