public class TargetMean extends AbstractClassifier implements Regressor
| Modifier and Type | Field and Description |
|---|---|
protected double |
errorSum |
FloatOption |
fadingErrorFactorOption |
protected long |
n |
protected double |
nError |
protected double |
sum |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
TargetMean() |
TargetMean(TargetMean t) |
| Modifier and Type | Method and Description |
|---|---|
double |
getCurrentError() |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
void |
reset(double currentMean,
long numberOfInstances) |
void |
resetError() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
protected void |
updateAccumulatedError(weka.core.Instance inst) |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizeprotected long n
protected double sum
protected double errorSum
protected double nError
public FloatOption fadingErrorFactorOption
public TargetMean(TargetMean t)
public TargetMean()
public boolean isRandomizable()
ClassifierisRandomizable in interface Classifierpublic double[] getVotesForInstance(weka.core.Instance inst)
ClassifiergetVotesForInstance in interface Classifierinst - the instance to be classifiedpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingprotected void updateAccumulatedError(weka.core.Instance inst)
protected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic void reset(double currentMean,
long numberOfInstances)
public double getCurrentError()
public void resetError()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.