public class DecisionStump extends AbstractClassifier
Modifier and Type | Field and Description |
---|---|
protected AutoExpandVector<AttributeClassObserver> |
attributeObservers |
protected AttributeSplitSuggestion |
bestSplit |
FlagOption |
binarySplitsOption |
IntOption |
gracePeriodOption |
protected DoubleVector |
observedClassDistribution |
ClassOption |
splitCriterionOption |
protected double |
weightSeenAtLastSplit |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
DecisionStump() |
Modifier and Type | Method and Description |
---|---|
protected AttributeSplitSuggestion |
findBestSplit(SplitCriterion criterion) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
protected AttributeClassObserver |
newNominalClassObserver() |
protected AttributeClassObserver |
newNumericClassObserver() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public IntOption gracePeriodOption
public FlagOption binarySplitsOption
public ClassOption splitCriterionOption
protected AttributeSplitSuggestion bestSplit
protected DoubleVector observedClassDistribution
protected AutoExpandVector<AttributeClassObserver> attributeObservers
protected double weightSeenAtLastSplit
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClassifier
public void resetLearningImpl()
AbstractClassifier
resetLearningImpl
in class AbstractClassifier
protected Measurement[] getModelMeasurementsImpl()
AbstractClassifier
getModelMeasurementsImpl
in class AbstractClassifier
public void getModelDescription(StringBuilder out, int indent)
AbstractClassifier
getModelDescription
in class AbstractClassifier
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentpublic void trainOnInstanceImpl(weka.core.Instance inst)
AbstractClassifier
trainOnInstanceImpl
in class AbstractClassifier
inst
- the instance to be used for trainingpublic double[] getVotesForInstance(weka.core.Instance inst)
Classifier
inst
- the instance to be classifiedpublic boolean isRandomizable()
Classifier
protected AttributeClassObserver newNominalClassObserver()
protected AttributeClassObserver newNumericClassObserver()
protected AttributeSplitSuggestion findBestSplit(SplitCriterion criterion)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.