public class FIMTDD extends AbstractClassifier implements Regressor
| Modifier and Type | Class and Description |
|---|---|
class |
FIMTDD.FIMTDDPerceptron |
static class |
FIMTDD.LeafNode |
static class |
FIMTDD.Node |
static class |
FIMTDD.SplitNode |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
FIMTDD() |
| Modifier and Type | Method and Description |
|---|---|
protected void |
attemptToSplit(FIMTDD.LeafNode node,
FIMTDD.SplitNode parent,
int parentIndex) |
boolean |
buildingModelTree() |
int |
calcByteSize() |
protected void |
checkRoot() |
static double |
computeHoeffdingBound(double range,
double confidence,
double n) |
double |
computeSD(double squaredVal,
double val,
double size) |
void |
getModelDescription(StringBuilder out,
int indent)
Returns a string representation of the model.
|
protected Measurement[] |
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
double |
getNormalizedError(weka.core.Instance inst) |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst)
Predicts the class memberships for a given instance.
|
boolean |
isRandomizable()
Gets whether this classifier needs a random seed.
|
protected FIMTDD.FIMTDDPerceptron |
newLeafModel() |
protected FIMTDD.LeafNode |
newLeafNode() |
protected FIMTDDNumericAttributeClassObserver |
newNumericClassObserver() |
protected FIMTDD.SplitNode |
newSplitNode(InstanceConditionalTest splitTest) |
double |
normalizeTargetValue(double value) |
void |
processInstance(weka.core.Instance inst,
FIMTDD.Node node,
double prediction,
double normalError,
boolean growthAllowed,
boolean inAlternate) |
void |
resetLearningImpl()
Resets this classifier.
|
double |
scalarProduct(DoubleVector u,
DoubleVector v) |
void |
trainOnInstanceImpl(weka.core.Instance inst)
Method for updating (training) the model using a new instance
|
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getSubClassifiers, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizeprotected FIMTDD.Node treeRoot
public int maxID
public ClassOption splitCriterionOption
public IntOption gracePeriodOption
public FloatOption splitConfidenceOption
public FloatOption tieThresholdOption
public FloatOption PageHinckleyAlphaOption
public IntOption PageHinckleyThresholdOption
public FloatOption alternateTreeFadingFactorOption
public IntOption alternateTreeTMinOption
public IntOption alternateTreeTimeOption
public FlagOption regressionTreeOption
public FloatOption learningRatioOption
public FloatOption learningRateDecayFactorOption
public FlagOption learningRatioConstOption
public String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClassifierpublic void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic boolean isRandomizable()
ClassifierisRandomizable in interface Classifierpublic void getModelDescription(StringBuilder out, int indent)
AbstractClassifiergetModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentprotected Measurement[] getModelMeasurementsImpl()
AbstractClassifiergetModelMeasurementsImpl in class AbstractClassifierpublic int calcByteSize()
public double[] getVotesForInstance(weka.core.Instance inst)
ClassifiergetVotesForInstance in interface Classifierinst - the instance to be classifiedpublic double normalizeTargetValue(double value)
public double getNormalizedError(weka.core.Instance inst)
public void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl in class AbstractClassifierinst - the instance to be used for trainingpublic void processInstance(weka.core.Instance inst,
FIMTDD.Node node,
double prediction,
double normalError,
boolean growthAllowed,
boolean inAlternate)
protected FIMTDDNumericAttributeClassObserver newNumericClassObserver()
protected FIMTDD.SplitNode newSplitNode(InstanceConditionalTest splitTest)
protected FIMTDD.LeafNode newLeafNode()
protected FIMTDD.FIMTDDPerceptron newLeafModel()
protected void checkRoot()
public static double computeHoeffdingBound(double range,
double confidence,
double n)
public boolean buildingModelTree()
protected void attemptToSplit(FIMTDD.LeafNode node, FIMTDD.SplitNode parent, int parentIndex)
public double computeSD(double squaredVal,
double val,
double size)
public double scalarProduct(DoubleVector u, DoubleVector v)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.