public class Clustering extends AbstractMOAObject
Constructor and Description |
---|
Clustering() |
Clustering(ArrayList<DataPoint> points,
double overlapThreshold,
int initMinPoints) |
Clustering(AutoExpandVector<Cluster> clusters) |
Clustering(Cluster[] clusters) |
Clustering(List<? extends weka.core.Instance> points) |
Modifier and Type | Method and Description |
---|---|
void |
add(Cluster cluster)
add a cluster to the clustering
|
static HashMap<Integer,Integer> |
classValues(List<? extends weka.core.Instance> points) |
int |
dimension() |
Cluster |
get(int index)
remove a cluster from the clustering
|
AutoExpandVector<Cluster> |
getClustering() |
AutoExpandVector<Cluster> |
getClusteringCopy() |
void |
getDescription(StringBuilder sb,
int i)
Returns a string representation of this object.
|
double |
getMaxInclusionProbability(weka.core.Instance point) |
void |
remove(int index)
remove a cluster from the clustering
|
int |
size() |
copy, copy, measureByteSize, measureByteSize, toString
public Clustering()
public Clustering(Cluster[] clusters)
public Clustering(List<? extends weka.core.Instance> points)
public Clustering(ArrayList<DataPoint> points, double overlapThreshold, int initMinPoints)
public Clustering(AutoExpandVector<Cluster> clusters)
public static HashMap<Integer,Integer> classValues(List<? extends weka.core.Instance> points)
points
- public void add(Cluster cluster)
public void remove(int index)
public Cluster get(int index)
public AutoExpandVector<Cluster> getClustering()
Clustering
as an AutoExpandVectorpublic AutoExpandVector<Cluster> getClusteringCopy()
Clustering
as an AutoExpandVectorpublic int size()
public int dimension()
public void getDescription(StringBuilder sb, int i)
MOAObject
AbstractMOAObject.toString
to give a string representation of the object.sb
- the stringbuilder to add the descriptioni
- the number of characters to indentpublic double getMaxInclusionProbability(weka.core.Instance point)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.