Modifier and Type | Field and Description |
---|---|
protected Clustering |
AbstractClusterer.clustering |
Modifier and Type | Method and Description |
---|---|
static Clustering |
KMeans.gaussianMeans(Clustering gtClustering,
Clustering clustering) |
Clustering |
WekaClusteringAlgorithm.getClusteringResult() |
Clustering |
ClusterGenerator.getClusteringResult() |
Clustering |
Clusterer.getClusteringResult() |
Clustering |
CobWeb.getClusteringResult() |
Clustering |
ClusterGenerator.getMicroClusteringResult() |
Clustering |
AbstractClusterer.getMicroClusteringResult() |
Clustering |
Clusterer.getMicroClusteringResult() |
static Clustering |
KMeans.kMeans(Cluster[] centers,
List<? extends Cluster> data)
This kMeans implementation clusters a big number of microclusters
into a smaller amount of macro clusters.
|
Modifier and Type | Method and Description |
---|---|
static Clustering |
KMeans.gaussianMeans(Clustering gtClustering,
Clustering clustering) |
void |
ClusterGenerator.setSourceClustering(Clustering source) |
Modifier and Type | Method and Description |
---|---|
protected static Clustering |
WithKmeans.cleanUpKMeans(Clustering kMeansResult,
ArrayList<CFCluster> microclusters)
Rearrange the k-means result into a set of CFClusters, cleaning up the redundancies.
|
Clustering |
WithKmeans.getClusteringResult() |
Clustering |
Clustream.getClusteringResult() |
Clustering |
WithKmeans.getClusteringResult(Clustering gtClustering) |
Clustering |
WithKmeans.getMicroClusteringResult() |
Clustering |
Clustream.getMicroClusteringResult() |
static Clustering |
WithKmeans.kMeans_gta(int k,
Clustering clustering,
Clustering gtClustering)
k-means of (micro)clusters, with ground-truth-aided initialization.
|
static Clustering |
WithKmeans.kMeans_rand(int k,
Clustering clustering)
k-means of (micro)clusters, with randomized initialization.
|
protected static Clustering |
WithKmeans.kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data)
(The Actual Algorithm) k-means of (micro)clusters, with specified initialization points.
|
static Clustering |
Clustream.kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data) |
static Clustering |
Clustream.kMeans(int k,
List<? extends Cluster> data) |
Modifier and Type | Method and Description |
---|---|
protected static Clustering |
WithKmeans.cleanUpKMeans(Clustering kMeansResult,
ArrayList<CFCluster> microclusters)
Rearrange the k-means result into a set of CFClusters, cleaning up the redundancies.
|
Clustering |
WithKmeans.getClusteringResult(Clustering gtClustering) |
static Clustering |
WithKmeans.kMeans_gta(int k,
Clustering clustering,
Clustering gtClustering)
k-means of (micro)clusters, with ground-truth-aided initialization.
|
static Clustering |
WithKmeans.kMeans_rand(int k,
Clustering clustering)
k-means of (micro)clusters, with randomized initialization.
|
Modifier and Type | Method and Description |
---|---|
Clustering |
ClusTree.getClustering(long currentTime,
int targetLevel) |
Clustering |
ClusTree.getClusteringResult() |
Clustering |
ClusTree.getMicroClusteringResult() |
Modifier and Type | Method and Description |
---|---|
Clustering |
WithDBSCAN.getClusteringResult() |
Clustering |
WithDBSCAN.getMicroClusteringResult() |
Modifier and Type | Method and Description |
---|---|
Clustering |
IDenseMacroCluster.getClustering() |
Clustering |
NonConvexCluster.getClustering() |
Clustering |
IMacroClusterer.getClustering(Clustering microClusters) |
abstract Clustering |
AbstractMacroClusterer.getClustering(Clustering microClusters) |
Modifier and Type | Method and Description |
---|---|
Clustering |
IMacroClusterer.getClustering(Clustering microClusters) |
abstract Clustering |
AbstractMacroClusterer.getClustering(Clustering microClusters) |
protected void |
AbstractMacroClusterer.setClusterIDs(Clustering clustering) |
Modifier and Type | Method and Description |
---|---|
Clustering |
DBScan.getClustering(Clustering microClusters) |
Modifier and Type | Method and Description |
---|---|
Clustering |
DBScan.getClustering(Clustering microClusters) |
Constructor and Description |
---|
DBScan(Clustering microClusters,
double eps,
int MinPts) |
Modifier and Type | Method and Description |
---|---|
Clustering |
MyBaseOutlierDetector.getClusteringResult() |
Clustering |
MyBaseOutlierDetector.getMicroClusteringResult() |
Modifier and Type | Method and Description |
---|---|
Clustering |
StreamKM.getClusteringResult() |
Modifier and Type | Method and Description |
---|---|
double |
StatisticalCollection.cindex(Clustering clustering,
ArrayList<DataPoint> points) |
void |
F1.evaluateClustering(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
void |
EntropyCollection.evaluateClustering(Clustering fclustering,
Clustering hClustering,
ArrayList<DataPoint> points) |
protected abstract void |
MeasureCollection.evaluateClustering(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
void |
CMM.evaluateClustering(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
void |
Accuracy.evaluateClustering(Clustering clustering,
Clustering trueClsutering,
ArrayList<DataPoint> points) |
void |
SilhouetteCoefficient.evaluateClustering(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
void |
General.evaluateClustering(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
void |
ChangeDetectionMeasures.evaluateClustering(Clustering clustering,
Clustering trueClsutering,
ArrayList<DataPoint> points) |
void |
StatisticalCollection.evaluateClustering(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
void |
OutlierPerformance.evaluateClustering(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
void |
SSQ.evaluateClustering(Clustering clustering,
Clustering trueClsutering,
ArrayList<DataPoint> points) |
double |
MeasureCollection.evaluateClusteringPerformance(Clustering clustering,
Clustering trueClustering,
ArrayList<DataPoint> points) |
Constructor and Description |
---|
CMM_GTAnalysis(Clustering trueClustering,
ArrayList<DataPoint> points,
boolean enableClassMerge) |
MembershipMatrix(Clustering foundClustering,
ArrayList<DataPoint> points) |
Modifier and Type | Method and Description |
---|---|
void |
StreamPanel.drawGTClustering(Clustering clustering,
List<DataPoint> points,
Color color) |
void |
StreamPanel.drawMacroClustering(Clustering clustering,
List<DataPoint> points,
Color color) |
void |
StreamPanel.drawMicroClustering(Clustering clustering,
List<DataPoint> points,
Color color) |
Modifier and Type | Method and Description |
---|---|
Clustering |
RandomRBFGeneratorEvents.getGeneratingClusters() |
Clustering |
RandomRBFGeneratorEvents.getMicroClustering() |
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.