public class WekaClusteringAlgorithm extends AbstractClusterer
Modifier and Type | Field and Description |
---|---|
IntOption |
horizonOption |
StringOption |
parameterOption |
MultiChoiceOption |
wekaAlgorithmOption |
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
WekaClusteringAlgorithm() |
Modifier and Type | Method and Description |
---|---|
Clustering |
getClusteringResult() |
weka.core.Instances |
getDataset(int numdim,
int numclass) |
void |
getModelDescription(StringBuilder out,
int indent) |
protected Measurement[] |
getModelMeasurementsImpl() |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst) |
boolean |
isRandomizable() |
boolean |
keepClassLabel() |
void |
resetLearningImpl() |
void |
trainOnInstanceImpl(weka.core.Instance inst) |
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getMicroClusteringResult, getModelContext, getModelMeasurements, getNominalValueString, getSubClusterers, implementsMicroClusterer, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public IntOption horizonOption
public MultiChoiceOption wekaAlgorithmOption
public StringOption parameterOption
public void resetLearningImpl()
resetLearningImpl
in class AbstractClusterer
public void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl
in class AbstractClusterer
public Clustering getClusteringResult()
public weka.core.Instances getDataset(int numdim, int numclass)
protected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl
in class AbstractClusterer
public void getModelDescription(StringBuilder out, int indent)
getModelDescription
in class AbstractClusterer
public boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
public boolean keepClassLabel()
keepClassLabel
in interface Clusterer
keepClassLabel
in class AbstractClusterer
public String getPurposeString()
OptionHandler
getPurposeString
in interface OptionHandler
getPurposeString
in class AbstractClusterer
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.