public class WekaClusteringAlgorithm extends AbstractClusterer
| Modifier and Type | Field and Description |
|---|---|
IntOption |
horizonOption |
StringOption |
parameterOption |
MultiChoiceOption |
wekaAlgorithmOption |
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
WekaClusteringAlgorithm() |
| Modifier and Type | Method and Description |
|---|---|
Clustering |
getClusteringResult() |
weka.core.Instances |
getDataset(int numdim,
int numclass) |
void |
getModelDescription(StringBuilder out,
int indent) |
protected Measurement[] |
getModelMeasurementsImpl() |
String |
getPurposeString()
Gets the purpose of this object
|
double[] |
getVotesForInstance(weka.core.Instance inst) |
boolean |
isRandomizable() |
boolean |
keepClassLabel() |
void |
resetLearningImpl() |
void |
trainOnInstanceImpl(weka.core.Instance inst) |
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getMicroClusteringResult, getModelContext, getModelMeasurements, getNominalValueString, getSubClusterers, implementsMicroClusterer, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic IntOption horizonOption
public MultiChoiceOption wekaAlgorithmOption
public StringOption parameterOption
public void resetLearningImpl()
resetLearningImpl in class AbstractClustererpublic void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl in class AbstractClustererpublic Clustering getClusteringResult()
public weka.core.Instances getDataset(int numdim,
int numclass)
protected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl in class AbstractClustererpublic void getModelDescription(StringBuilder out, int indent)
getModelDescription in class AbstractClustererpublic boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
public boolean keepClassLabel()
keepClassLabel in interface ClustererkeepClassLabel in class AbstractClustererpublic String getPurposeString()
OptionHandlergetPurposeString in interface OptionHandlergetPurposeString in class AbstractClustererCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.