public class Clustream extends AbstractClusterer
| Modifier and Type | Field and Description |
|---|---|
IntOption |
kernelRadiFactorOption |
IntOption |
maxNumKernelsOption |
IntOption |
timeWindowOption |
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
Clustream() |
| Modifier and Type | Method and Description |
|---|---|
Clustering |
getClusteringResult() |
Clustering |
getMicroClusteringResult() |
void |
getModelDescription(StringBuilder out,
int indent) |
protected Measurement[] |
getModelMeasurementsImpl() |
String |
getName() |
double[] |
getVotesForInstance(weka.core.Instance inst) |
boolean |
implementsMicroClusterer() |
boolean |
isRandomizable() |
static Clustering |
kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data) |
static Clustering |
kMeans(int k,
List<? extends Cluster> data) |
void |
resetLearningImpl() |
void |
trainOnInstanceImpl(weka.core.Instance instance) |
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic IntOption timeWindowOption
public IntOption maxNumKernelsOption
public IntOption kernelRadiFactorOption
public void resetLearningImpl()
resetLearningImpl in class AbstractClustererpublic void trainOnInstanceImpl(weka.core.Instance instance)
trainOnInstanceImpl in class AbstractClustererpublic Clustering getMicroClusteringResult()
getMicroClusteringResult in interface ClusterergetMicroClusteringResult in class AbstractClustererpublic boolean implementsMicroClusterer()
implementsMicroClusterer in interface ClustererimplementsMicroClusterer in class AbstractClustererpublic Clustering getClusteringResult()
public String getName()
public static Clustering kMeans(int k, List<? extends Cluster> data)
public static Clustering kMeans(int k, Cluster[] centers, List<? extends Cluster> data)
protected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl in class AbstractClustererpublic void getModelDescription(StringBuilder out, int indent)
getModelDescription in class AbstractClustererpublic boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.