public class Clustream extends AbstractClusterer
Modifier and Type | Field and Description |
---|---|
IntOption |
kernelRadiFactorOption |
IntOption |
maxNumKernelsOption |
IntOption |
timeWindowOption |
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
Clustream() |
Modifier and Type | Method and Description |
---|---|
Clustering |
getClusteringResult() |
Clustering |
getMicroClusteringResult() |
void |
getModelDescription(StringBuilder out,
int indent) |
protected Measurement[] |
getModelMeasurementsImpl() |
String |
getName() |
double[] |
getVotesForInstance(weka.core.Instance inst) |
boolean |
implementsMicroClusterer() |
boolean |
isRandomizable() |
static Clustering |
kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data) |
static Clustering |
kMeans(int k,
List<? extends Cluster> data) |
void |
resetLearningImpl() |
void |
trainOnInstanceImpl(weka.core.Instance instance) |
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public IntOption timeWindowOption
public IntOption maxNumKernelsOption
public IntOption kernelRadiFactorOption
public void resetLearningImpl()
resetLearningImpl
in class AbstractClusterer
public void trainOnInstanceImpl(weka.core.Instance instance)
trainOnInstanceImpl
in class AbstractClusterer
public Clustering getMicroClusteringResult()
getMicroClusteringResult
in interface Clusterer
getMicroClusteringResult
in class AbstractClusterer
public boolean implementsMicroClusterer()
implementsMicroClusterer
in interface Clusterer
implementsMicroClusterer
in class AbstractClusterer
public Clustering getClusteringResult()
public String getName()
public static Clustering kMeans(int k, List<? extends Cluster> data)
public static Clustering kMeans(int k, Cluster[] centers, List<? extends Cluster> data)
protected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl
in class AbstractClusterer
public void getModelDescription(StringBuilder out, int indent)
getModelDescription
in class AbstractClusterer
public boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.