public class WithKmeans extends AbstractClusterer
| Modifier and Type | Field and Description |
|---|---|
IntOption |
kernelRadiFactorOption |
IntOption |
kOption |
IntOption |
maxNumKernelsOption |
IntOption |
timeWindowOption |
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
WithKmeans() |
| Modifier and Type | Method and Description |
|---|---|
protected static Clustering |
cleanUpKMeans(Clustering kMeansResult,
ArrayList<CFCluster> microclusters)
Rearrange the k-means result into a set of CFClusters, cleaning up the redundancies.
|
Clustering |
getClusteringResult() |
Clustering |
getClusteringResult(Clustering gtClustering) |
Clustering |
getMicroClusteringResult() |
void |
getModelDescription(StringBuilder out,
int indent) |
protected Measurement[] |
getModelMeasurementsImpl() |
String |
getName() |
double[] |
getVotesForInstance(weka.core.Instance inst) |
boolean |
implementsMicroClusterer()
Miscellaneous
|
boolean |
isRandomizable() |
static Clustering |
kMeans_gta(int k,
Clustering clustering,
Clustering gtClustering)
k-means of (micro)clusters, with ground-truth-aided initialization.
|
static Clustering |
kMeans_rand(int k,
Clustering clustering)
k-means of (micro)clusters, with randomized initialization.
|
protected static Clustering |
kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data)
(The Actual Algorithm) k-means of (micro)clusters, with specified initialization points.
|
void |
resetLearningImpl() |
void |
trainOnInstanceImpl(weka.core.Instance instance) |
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic IntOption timeWindowOption
public IntOption maxNumKernelsOption
public IntOption kernelRadiFactorOption
public IntOption kOption
public void resetLearningImpl()
resetLearningImpl in class AbstractClustererpublic void trainOnInstanceImpl(weka.core.Instance instance)
trainOnInstanceImpl in class AbstractClustererpublic Clustering getMicroClusteringResult()
getMicroClusteringResult in interface ClusterergetMicroClusteringResult in class AbstractClustererpublic Clustering getClusteringResult()
public Clustering getClusteringResult(Clustering gtClustering)
public String getName()
public static Clustering kMeans_gta(int k, Clustering clustering, Clustering gtClustering)
k - data - public static Clustering kMeans_rand(int k, Clustering clustering)
k - data - protected static Clustering kMeans(int k, Cluster[] centers, List<? extends Cluster> data)
k - centers - - initial centersdata - protected static Clustering cleanUpKMeans(Clustering kMeansResult, ArrayList<CFCluster> microclusters)
kMeansResult - microclusters - public boolean implementsMicroClusterer()
implementsMicroClusterer in interface ClustererimplementsMicroClusterer in class AbstractClustererpublic boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
protected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl in class AbstractClustererpublic void getModelDescription(StringBuilder out, int indent)
getModelDescription in class AbstractClustererCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.