public class WithKmeans extends AbstractClusterer
Modifier and Type | Field and Description |
---|---|
IntOption |
kernelRadiFactorOption |
IntOption |
kOption |
IntOption |
maxNumKernelsOption |
IntOption |
timeWindowOption |
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
WithKmeans() |
Modifier and Type | Method and Description |
---|---|
protected static Clustering |
cleanUpKMeans(Clustering kMeansResult,
ArrayList<CFCluster> microclusters)
Rearrange the k-means result into a set of CFClusters, cleaning up the redundancies.
|
Clustering |
getClusteringResult() |
Clustering |
getClusteringResult(Clustering gtClustering) |
Clustering |
getMicroClusteringResult() |
void |
getModelDescription(StringBuilder out,
int indent) |
protected Measurement[] |
getModelMeasurementsImpl() |
String |
getName() |
double[] |
getVotesForInstance(weka.core.Instance inst) |
boolean |
implementsMicroClusterer()
Miscellaneous
|
boolean |
isRandomizable() |
static Clustering |
kMeans_gta(int k,
Clustering clustering,
Clustering gtClustering)
k-means of (micro)clusters, with ground-truth-aided initialization.
|
static Clustering |
kMeans_rand(int k,
Clustering clustering)
k-means of (micro)clusters, with randomized initialization.
|
protected static Clustering |
kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data)
(The Actual Algorithm) k-means of (micro)clusters, with specified initialization points.
|
void |
resetLearningImpl() |
void |
trainOnInstanceImpl(weka.core.Instance instance) |
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public IntOption timeWindowOption
public IntOption maxNumKernelsOption
public IntOption kernelRadiFactorOption
public IntOption kOption
public void resetLearningImpl()
resetLearningImpl
in class AbstractClusterer
public void trainOnInstanceImpl(weka.core.Instance instance)
trainOnInstanceImpl
in class AbstractClusterer
public Clustering getMicroClusteringResult()
getMicroClusteringResult
in interface Clusterer
getMicroClusteringResult
in class AbstractClusterer
public Clustering getClusteringResult()
public Clustering getClusteringResult(Clustering gtClustering)
public String getName()
public static Clustering kMeans_gta(int k, Clustering clustering, Clustering gtClustering)
k
- data
- public static Clustering kMeans_rand(int k, Clustering clustering)
k
- data
- protected static Clustering kMeans(int k, Cluster[] centers, List<? extends Cluster> data)
k
- centers
- - initial centersdata
- protected static Clustering cleanUpKMeans(Clustering kMeansResult, ArrayList<CFCluster> microclusters)
kMeansResult
- microclusters
- public boolean implementsMicroClusterer()
implementsMicroClusterer
in interface Clusterer
implementsMicroClusterer
in class AbstractClusterer
public boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
protected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl
in class AbstractClusterer
public void getModelDescription(StringBuilder out, int indent)
getModelDescription
in class AbstractClusterer
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.