public class StreamKM extends AbstractClusterer
| Modifier and Type | Field and Description |
|---|---|
protected Point[] |
centresStreamingCoreset |
protected MTRandom |
clustererRandom |
protected int |
coresetsize |
protected int |
dimension |
protected boolean |
initialized |
protected int |
length |
protected BucketManager |
manager |
protected int |
numberInstances |
protected int |
numberOfCentres |
IntOption |
numClustersOption |
IntOption |
randomSeedOption |
IntOption |
sizeCoresetOption |
IntOption |
widthOption |
clustering, evaluateMicroClusteringOption, modelContext, randomSeed, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
StreamKM() |
| Modifier and Type | Method and Description |
|---|---|
Clustering |
getClusteringResult() |
void |
getModelDescription(StringBuilder out,
int indent) |
protected Measurement[] |
getModelMeasurementsImpl() |
double[] |
getVotesForInstance(weka.core.Instance inst) |
boolean |
isRandomizable() |
double |
lloydPlusPlus(int k,
int n,
int d,
Point[] points,
Point[] centres) |
void |
resetLearningImpl() |
double |
targetFunctionValue(int k,
int n,
Point[] centres,
Point[] points)
computes the target function for the given pointarray points[] (of size n) with the given array of
centres centres[] (of size k)
|
void |
trainOnInstanceImpl(weka.core.Instance inst) |
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getMicroClusteringResult, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, implementsMicroClusterer, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic IntOption sizeCoresetOption
public IntOption numClustersOption
public IntOption widthOption
public IntOption randomSeedOption
protected MTRandom clustererRandom
protected Point[] centresStreamingCoreset
protected int numberInstances
protected int dimension
protected int length
protected int numberOfCentres
protected int coresetsize
protected BucketManager manager
protected boolean initialized
public void resetLearningImpl()
resetLearningImpl in class AbstractClustererpublic void trainOnInstanceImpl(weka.core.Instance inst)
trainOnInstanceImpl in class AbstractClustererprotected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl in class AbstractClustererpublic void getModelDescription(StringBuilder out, int indent)
getModelDescription in class AbstractClustererpublic boolean isRandomizable()
public double[] getVotesForInstance(weka.core.Instance inst)
public Clustering getClusteringResult()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.