public class AMRulesRegressor extends AbstractAMRules implements Regressor
| Modifier and Type | Field and Description |
|---|---|
FlagOption |
constantLearningRatioDecayOption |
FloatOption |
learningRatioOption |
MultiChoiceOption |
predictionFunctionOption |
ClassOption |
votingTypeOption |
anomalyNumInstThresholdOption, defaultRule, DriftDetectionOption, gracePeriodOption, multivariateAnomalyProbabilityThresholdOption, noAnomalyDetectionOption, NORMAL_CONSTANT, numericObserverOption, pageHinckleyAlphaOption, pageHinckleyThresholdOption, ruleNumberID, ruleSet, splitConfidenceOption, statistics, tieThresholdOption, univariateAnomalyprobabilityThresholdOption, unorderedRulesOption, VerbosityOptionclassifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
AMRulesRegressor() |
| Modifier and Type | Method and Description |
|---|---|
void |
getModelDescription(StringBuilder out,
int indent)
print GUI learn model
|
boolean |
isRandomizable()
description of the Methods used.
|
ErrorWeightedVote |
newErrorWeightedVote() |
protected Rule |
newRule(int ID,
RuleActiveLearningNode node,
double[] statistics)
Rule.Builder() to build an object with the parameters.
|
RuleActiveLearningNode |
newRuleActiveLearningNode(double[] initialClassObservations) |
RuleActiveLearningNode |
newRuleActiveLearningNode(Rule.Builder builder) |
void |
resetLearningImpl()
This method initializes and resets the algorithm.
|
debug, getModelAttIndexToInstanceAttIndex, getModelMeasurementsImpl, getVotesForInstance, modelAttIndexToInstanceAttIndex, PrintRuleSet, trainOnInstanceImpl, VerboseToConsolecontextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClassifiers, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizepublic FlagOption constantLearningRatioDecayOption
public FloatOption learningRatioOption
public MultiChoiceOption predictionFunctionOption
public ClassOption votingTypeOption
protected Rule newRule(int ID, RuleActiveLearningNode node, double[] statistics)
AbstractAMRulesnewRule in class AbstractAMRulespublic RuleActiveLearningNode newRuleActiveLearningNode(Rule.Builder builder)
newRuleActiveLearningNode in class AbstractAMRulespublic RuleActiveLearningNode newRuleActiveLearningNode(double[] initialClassObservations)
newRuleActiveLearningNode in class AbstractAMRulespublic void getModelDescription(StringBuilder out, int indent)
AbstractAMRulesgetModelDescription in class AbstractAMRulesout - the stringbuilder to add the descriptionindent - the number of characters to indentpublic void resetLearningImpl()
resetLearningImpl in class AbstractAMRulespublic boolean isRandomizable()
AbstractAMRulesisRandomizable in interface ClassifierisRandomizable in class AbstractAMRulespublic ErrorWeightedVote newErrorWeightedVote()
newErrorWeightedVote in class AbstractAMRulesCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.