public class AMRulesRegressor extends AbstractAMRules implements Regressor
Modifier and Type | Field and Description |
---|---|
FlagOption |
constantLearningRatioDecayOption |
FloatOption |
learningRatioOption |
MultiChoiceOption |
predictionFunctionOption |
ClassOption |
votingTypeOption |
anomalyNumInstThresholdOption, defaultRule, DriftDetectionOption, gracePeriodOption, multivariateAnomalyProbabilityThresholdOption, noAnomalyDetectionOption, NORMAL_CONSTANT, numericObserverOption, pageHinckleyAlphaOption, pageHinckleyThresholdOption, ruleNumberID, ruleSet, splitConfidenceOption, statistics, tieThresholdOption, univariateAnomalyprobabilityThresholdOption, unorderedRulesOption, VerbosityOption
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
classOptionNamesToPreparedObjects, options
Constructor and Description |
---|
AMRulesRegressor() |
Modifier and Type | Method and Description |
---|---|
void |
getModelDescription(StringBuilder out,
int indent)
print GUI learn model
|
boolean |
isRandomizable()
description of the Methods used.
|
ErrorWeightedVote |
newErrorWeightedVote() |
protected Rule |
newRule(int ID,
RuleActiveLearningNode node,
double[] statistics)
Rule.Builder() to build an object with the parameters.
|
RuleActiveLearningNode |
newRuleActiveLearningNode(double[] initialClassObservations) |
RuleActiveLearningNode |
newRuleActiveLearningNode(Rule.Builder builder) |
void |
resetLearningImpl()
This method initializes and resets the algorithm.
|
debug, getModelAttIndexToInstanceAttIndex, getModelMeasurementsImpl, getVotesForInstance, modelAttIndexToInstanceAttIndex, PrintRuleSet, trainOnInstanceImpl, VerboseToConsole
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClassifiers, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
discoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
copy, measureByteSize, measureByteSize, toString
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getCLICreationString, getOptions, prepareForUse, prepareForUse
measureByteSize
public FlagOption constantLearningRatioDecayOption
public FloatOption learningRatioOption
public MultiChoiceOption predictionFunctionOption
public ClassOption votingTypeOption
protected Rule newRule(int ID, RuleActiveLearningNode node, double[] statistics)
AbstractAMRules
newRule
in class AbstractAMRules
public RuleActiveLearningNode newRuleActiveLearningNode(Rule.Builder builder)
newRuleActiveLearningNode
in class AbstractAMRules
public RuleActiveLearningNode newRuleActiveLearningNode(double[] initialClassObservations)
newRuleActiveLearningNode
in class AbstractAMRules
public void getModelDescription(StringBuilder out, int indent)
AbstractAMRules
getModelDescription
in class AbstractAMRules
out
- the stringbuilder to add the descriptionindent
- the number of characters to indentpublic void resetLearningImpl()
resetLearningImpl
in class AbstractAMRules
public boolean isRandomizable()
AbstractAMRules
isRandomizable
in interface Classifier
isRandomizable
in class AbstractAMRules
public ErrorWeightedVote newErrorWeightedVote()
newErrorWeightedVote
in class AbstractAMRules
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.