public abstract class AbstractAMRules extends AbstractClassifier
| Modifier and Type | Field and Description |
|---|---|
IntOption |
anomalyNumInstThresholdOption |
protected Rule |
defaultRule |
FlagOption |
DriftDetectionOption |
IntOption |
gracePeriodOption |
FloatOption |
multivariateAnomalyProbabilityThresholdOption |
FlagOption |
noAnomalyDetectionOption |
static double |
NORMAL_CONSTANT |
ClassOption |
numericObserverOption |
FloatOption |
pageHinckleyAlphaOption |
IntOption |
pageHinckleyThresholdOption |
protected int |
ruleNumberID |
protected RuleSet |
ruleSet |
FloatOption |
splitConfidenceOption |
protected double[] |
statistics |
FloatOption |
tieThresholdOption |
FloatOption |
univariateAnomalyprobabilityThresholdOption |
FlagOption |
unorderedRulesOption |
IntOption |
VerbosityOption |
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModelclassOptionNamesToPreparedObjects, options| Constructor and Description |
|---|
AbstractAMRules() |
| Modifier and Type | Method and Description |
|---|---|
protected void |
debug(String string,
int level)
Print to console
|
int |
getModelAttIndexToInstanceAttIndex(int index,
weka.core.Instance inst) |
void |
getModelDescription(StringBuilder out,
int indent)
print GUI learn model
|
protected Measurement[] |
getModelMeasurementsImpl()
print GUI evaluate model
|
double[] |
getVotesForInstance(weka.core.Instance instance)
getVotesForInstance extension of the instance method getVotesForInstance
in moa.classifier.java
returns the prediction of the instance.
|
abstract boolean |
isRandomizable()
description of the Methods used.
|
static int |
modelAttIndexToInstanceAttIndex(int index,
weka.core.Instance inst)
Gets the index of the attribute in the instance,
given the index of the attribute in the learner.
|
abstract ErrorWeightedVote |
newErrorWeightedVote() |
protected abstract Rule |
newRule(int ID,
RuleActiveLearningNode learningNode,
double[] statistics)
Rule.Builder() to build an object with the parameters.
|
abstract RuleActiveLearningNode |
newRuleActiveLearningNode(double[] initialClassObservations) |
abstract RuleActiveLearningNode |
newRuleActiveLearningNode(Rule.Builder builder) |
void |
PrintRuleSet() |
void |
resetLearningImpl()
Resets this classifier.
|
void |
trainOnInstanceImpl(weka.core.Instance instance)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. |
protected void |
VerboseToConsole(weka.core.Instance inst) |
contextIsCompatible, copy, correctlyClassifies, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClassifiers, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstancediscoverOptionsViaReflection, getCLICreationString, getOptions, getPreparedClassOption, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUsecopy, measureByteSize, measureByteSize, toStringclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCLICreationString, getOptions, prepareForUse, prepareForUsemeasureByteSizeprotected RuleSet ruleSet
protected Rule defaultRule
protected int ruleNumberID
protected double[] statistics
public static final double NORMAL_CONSTANT
public FloatOption splitConfidenceOption
public FloatOption tieThresholdOption
public IntOption gracePeriodOption
public FlagOption DriftDetectionOption
public FloatOption pageHinckleyAlphaOption
public IntOption pageHinckleyThresholdOption
public FlagOption noAnomalyDetectionOption
public FloatOption multivariateAnomalyProbabilityThresholdOption
public FloatOption univariateAnomalyprobabilityThresholdOption
public IntOption anomalyNumInstThresholdOption
public FlagOption unorderedRulesOption
public IntOption VerbosityOption
public ClassOption numericObserverOption
public abstract boolean isRandomizable()
protected abstract Rule newRule(int ID, RuleActiveLearningNode learningNode, double[] statistics)
public void trainOnInstanceImpl(weka.core.Instance instance)
AbstractClassifiertrainOnInstanceImpl in class AbstractClassifierinstance - the instance to be used for trainingpublic double[] getVotesForInstance(weka.core.Instance instance)
instance - the instance to be classifiedprotected Measurement[] getModelMeasurementsImpl()
getModelMeasurementsImpl in class AbstractClassifierpublic void getModelDescription(StringBuilder out, int indent)
getModelDescription in class AbstractClassifierout - the stringbuilder to add the descriptionindent - the number of characters to indentprotected void debug(String string, int level)
string - protected void VerboseToConsole(weka.core.Instance inst)
public void PrintRuleSet()
public abstract RuleActiveLearningNode newRuleActiveLearningNode(Rule.Builder builder)
public abstract RuleActiveLearningNode newRuleActiveLearningNode(double[] initialClassObservations)
public int getModelAttIndexToInstanceAttIndex(int index,
weka.core.Instance inst)
public void resetLearningImpl()
AbstractClassifierresetLearningImpl in class AbstractClassifierpublic static int modelAttIndexToInstanceAttIndex(int index,
weka.core.Instance inst)
index - the index of the attribute in the learnerinst - the instancepublic abstract ErrorWeightedVote newErrorWeightedVote()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.