public abstract class RuleActiveLearningNode extends HoeffdingTree.ActiveLearningNode
Modifier and Type | Field and Description |
---|---|
protected AbstractAMRules |
amRules |
protected AttributeSplitSuggestion |
bestSuggestion |
protected boolean |
changeDetection |
protected DoubleVector |
nodeStatistics |
protected Rule |
owner |
protected PageHinkleyTest |
pageHinckleyTest |
protected int |
predictionFunction |
protected int |
splitIndex |
protected double[] |
statisticsBranchSplit |
protected double[] |
statisticsNewRuleActiveLearningNode |
protected double[] |
statisticsOtherBranchSplit |
attributeObservers, isInitialized, weightSeenAtLastSplitEvaluation
observedClassDistribution
Constructor and Description |
---|
RuleActiveLearningNode() |
RuleActiveLearningNode(double[] initialClassObservations)
Create a new RuleActiveLearningNode
|
RuleActiveLearningNode(Rule.Builder builder) |
Modifier and Type | Method and Description |
---|---|
abstract double |
computeError(weka.core.Instance instance) |
static double |
computeHoeffdingBound(double range,
double confidence,
double n) |
double |
computeProbability(double mean,
double sd,
double value) |
protected void |
debug(String string,
int level) |
AutoExpandVector<AttributeClassObserver> |
getAttributeObservers() |
AttributeSplitSuggestion |
getBestSuggestion() |
abstract double |
getCurrentError() |
long |
getInstancesSeen() |
abstract int |
getLearnerToUse(weka.core.Instance instance,
int predictionMode) |
DoubleVector |
getNodeStatistics() |
double[] |
getPrediction(weka.core.Instance instance) |
abstract double[] |
getPrediction(weka.core.Instance instance,
int predictionMode) |
abstract double[] |
getSimplePrediction() |
int |
getSplitIndex() |
double[] |
getStatisticsBranchSplit() |
double[] |
getStatisticsNewRuleActiveLearningNode() |
double[] |
getStatisticsOtherBranchSplit() |
abstract void |
initialize(RuleActiveLearningNode oldLearningNode) |
abstract boolean |
isAnomaly(weka.core.Instance instance,
double uniVariateAnomalyProbabilityThreshold,
double multiVariateAnomalyProbabilityThreshold,
int numberOfInstanceesForAnomaly) |
abstract void |
learnFromInstance(weka.core.Instance inst) |
void |
learnFromInstance(weka.core.Instance inst,
HoeffdingTree ht) |
protected AttributeClassObserver |
newNumericClassObserver() |
void |
setBestSuggestion(AttributeSplitSuggestion bestSuggestion) |
void |
setSplitIndex(int splitIndex) |
void |
setStatisticsBranchSplit(double[] statisticsBranchSplit) |
void |
setStatisticsNewRuleActiveLearningNode(double[] statisticsNewRuleActiveLearningNode) |
void |
setStatisticsOtherBranchSplit(double[] statisticsOtherBranchSplit) |
abstract boolean |
tryToExpand(double splitConfidence,
double tieThreshold) |
boolean |
updateChangeDetection(double error) |
boolean |
updatePageHinckleyTest(double error) |
void |
updateStatistics(weka.core.Instance instance) |
calcByteSize, disableAttribute, getBestSplitSuggestions, getWeightSeen, getWeightSeenAtLastSplitEvaluation, setWeightSeenAtLastSplitEvaluation
calcByteSizeIncludingSubtree, calculatePromise, describeSubtree, filterInstanceToLeaf, getClassVotes, getDescription, getObservedClassDistribution, isLeaf, observedClassDistributionIsPure, subtreeDepth
copy, copy, measureByteSize, measureByteSize, toString
protected PageHinkleyTest pageHinckleyTest
protected int predictionFunction
protected boolean changeDetection
protected Rule owner
protected DoubleVector nodeStatistics
protected AbstractAMRules amRules
protected AttributeSplitSuggestion bestSuggestion
protected int splitIndex
protected double[] statisticsNewRuleActiveLearningNode
protected double[] statisticsBranchSplit
protected double[] statisticsOtherBranchSplit
public RuleActiveLearningNode(double[] initialClassObservations)
public RuleActiveLearningNode()
public RuleActiveLearningNode(Rule.Builder builder)
public abstract void learnFromInstance(weka.core.Instance inst)
public void learnFromInstance(weka.core.Instance inst, HoeffdingTree ht)
learnFromInstance
in class HoeffdingTree.ActiveLearningNode
protected AttributeClassObserver newNumericClassObserver()
public void updateStatistics(weka.core.Instance instance)
public AutoExpandVector<AttributeClassObserver> getAttributeObservers()
protected void debug(String string, int level)
public double[] getPrediction(weka.core.Instance instance)
public abstract double[] getPrediction(weka.core.Instance instance, int predictionMode)
public abstract int getLearnerToUse(weka.core.Instance instance, int predictionMode)
public abstract double computeError(weka.core.Instance instance)
public boolean updatePageHinckleyTest(double error)
public long getInstancesSeen()
public abstract boolean isAnomaly(weka.core.Instance instance, double uniVariateAnomalyProbabilityThreshold, double multiVariateAnomalyProbabilityThreshold, int numberOfInstanceesForAnomaly)
public double computeProbability(double mean, double sd, double value)
public int getSplitIndex()
public void setSplitIndex(int splitIndex)
public AttributeSplitSuggestion getBestSuggestion()
public void setBestSuggestion(AttributeSplitSuggestion bestSuggestion)
public double[] getStatisticsBranchSplit()
public void setStatisticsBranchSplit(double[] statisticsBranchSplit)
public double[] getStatisticsNewRuleActiveLearningNode()
public void setStatisticsNewRuleActiveLearningNode(double[] statisticsNewRuleActiveLearningNode)
public double[] getStatisticsOtherBranchSplit()
public void setStatisticsOtherBranchSplit(double[] statisticsOtherBranchSplit)
public abstract boolean tryToExpand(double splitConfidence, double tieThreshold)
public static double computeHoeffdingBound(double range, double confidence, double n)
public abstract void initialize(RuleActiveLearningNode oldLearningNode)
public abstract double[] getSimplePrediction()
public DoubleVector getNodeStatistics()
public boolean updateChangeDetection(double error)
public abstract double getCurrentError()
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.