public class RuleActiveRegressionNode extends RuleActiveLearningNode
Modifier and Type | Field and Description |
---|---|
protected Perceptron |
perceptron |
protected TargetMean |
targetMean |
amRules, bestSuggestion, changeDetection, nodeStatistics, owner, pageHinckleyTest, predictionFunction, splitIndex, statisticsBranchSplit, statisticsNewRuleActiveLearningNode, statisticsOtherBranchSplit
attributeObservers, isInitialized, weightSeenAtLastSplitEvaluation
observedClassDistribution
Constructor and Description |
---|
RuleActiveRegressionNode() |
RuleActiveRegressionNode(double[] initialClassObservations) |
RuleActiveRegressionNode(Rule.Builder builder) |
Modifier and Type | Method and Description |
---|---|
double |
computeError(weka.core.Instance instance) |
double |
computeSD(double squaredVal,
double val,
long size) |
protected void |
debuganomaly(weka.core.Instance instance,
double uni,
double multi,
double probability) |
AttributeSplitSuggestion[] |
getBestSplitSuggestions(SplitCriterion criterion) |
double |
getCurrentError() |
int |
getLearnerToUse(weka.core.Instance instance,
int predMode) |
double |
getNormalizedPrediction(weka.core.Instance instance) |
Perceptron |
getPerceptron() |
double[] |
getPrediction(weka.core.Instance instance,
int predictionMode) |
double[] |
getSimplePrediction() |
TargetMean |
getTargetMean() |
double |
getWeightSeen() |
void |
initialize(RuleActiveLearningNode oldLearningNode) |
boolean |
isAnomaly(weka.core.Instance instance,
double uniVariateAnomalyProbabilityThreshold,
double multiVariateAnomalyProbabilityThreshold,
int numberOfInstanceesForAnomaly) |
void |
learnFromInstance(weka.core.Instance inst) |
void |
setPerceptron(Perceptron perceptron) |
void |
setTargetMean(TargetMean targetMean) |
boolean |
tryToExpand(double splitConfidence,
double tieThreshold) |
void |
updateStatistics(weka.core.Instance instance) |
computeHoeffdingBound, computeProbability, debug, getAttributeObservers, getBestSuggestion, getInstancesSeen, getNodeStatistics, getPrediction, getSplitIndex, getStatisticsBranchSplit, getStatisticsNewRuleActiveLearningNode, getStatisticsOtherBranchSplit, learnFromInstance, newNumericClassObserver, setBestSuggestion, setSplitIndex, setStatisticsBranchSplit, setStatisticsNewRuleActiveLearningNode, setStatisticsOtherBranchSplit, updateChangeDetection, updatePageHinckleyTest
calcByteSize, disableAttribute, getBestSplitSuggestions, getWeightSeenAtLastSplitEvaluation, setWeightSeenAtLastSplitEvaluation
calcByteSizeIncludingSubtree, calculatePromise, describeSubtree, filterInstanceToLeaf, getClassVotes, getDescription, getObservedClassDistribution, isLeaf, observedClassDistributionIsPure, subtreeDepth
copy, copy, measureByteSize, measureByteSize, toString
protected Perceptron perceptron
protected TargetMean targetMean
public RuleActiveRegressionNode(double[] initialClassObservations)
public RuleActiveRegressionNode()
public RuleActiveRegressionNode(Rule.Builder builder)
public Perceptron getPerceptron()
public void setPerceptron(Perceptron perceptron)
public TargetMean getTargetMean()
public void setTargetMean(TargetMean targetMean)
public void updateStatistics(weka.core.Instance instance)
updateStatistics
in class RuleActiveLearningNode
public double[] getPrediction(weka.core.Instance instance, int predictionMode)
getPrediction
in class RuleActiveLearningNode
public double getNormalizedPrediction(weka.core.Instance instance)
public int getLearnerToUse(weka.core.Instance instance, int predMode)
getLearnerToUse
in class RuleActiveLearningNode
public double computeSD(double squaredVal, double val, long size)
public double computeError(weka.core.Instance instance)
computeError
in class RuleActiveLearningNode
public boolean isAnomaly(weka.core.Instance instance, double uniVariateAnomalyProbabilityThreshold, double multiVariateAnomalyProbabilityThreshold, int numberOfInstanceesForAnomaly)
isAnomaly
in class RuleActiveLearningNode
protected void debuganomaly(weka.core.Instance instance, double uni, double multi, double probability)
public void initialize(RuleActiveLearningNode oldLearningNode)
initialize
in class RuleActiveLearningNode
public double[] getSimplePrediction()
getSimplePrediction
in class RuleActiveLearningNode
public boolean tryToExpand(double splitConfidence, double tieThreshold)
tryToExpand
in class RuleActiveLearningNode
public void learnFromInstance(weka.core.Instance inst)
learnFromInstance
in class RuleActiveLearningNode
public AttributeSplitSuggestion[] getBestSplitSuggestions(SplitCriterion criterion)
public double getWeightSeen()
getWeightSeen
in class HoeffdingTree.ActiveLearningNode
public double getCurrentError()
getCurrentError
in class RuleActiveLearningNode
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.