public class RuleActiveRegressionNode extends RuleActiveLearningNode
| Modifier and Type | Field and Description |
|---|---|
protected Perceptron |
perceptron |
protected TargetMean |
targetMean |
amRules, bestSuggestion, changeDetection, nodeStatistics, owner, pageHinckleyTest, predictionFunction, splitIndex, statisticsBranchSplit, statisticsNewRuleActiveLearningNode, statisticsOtherBranchSplitattributeObservers, isInitialized, weightSeenAtLastSplitEvaluationobservedClassDistribution| Constructor and Description |
|---|
RuleActiveRegressionNode() |
RuleActiveRegressionNode(double[] initialClassObservations) |
RuleActiveRegressionNode(Rule.Builder builder) |
| Modifier and Type | Method and Description |
|---|---|
double |
computeError(weka.core.Instance instance) |
double |
computeSD(double squaredVal,
double val,
long size) |
protected void |
debuganomaly(weka.core.Instance instance,
double uni,
double multi,
double probability) |
AttributeSplitSuggestion[] |
getBestSplitSuggestions(SplitCriterion criterion) |
double |
getCurrentError() |
int |
getLearnerToUse(weka.core.Instance instance,
int predMode) |
double |
getNormalizedPrediction(weka.core.Instance instance) |
Perceptron |
getPerceptron() |
double[] |
getPrediction(weka.core.Instance instance,
int predictionMode) |
double[] |
getSimplePrediction() |
TargetMean |
getTargetMean() |
double |
getWeightSeen() |
void |
initialize(RuleActiveLearningNode oldLearningNode) |
boolean |
isAnomaly(weka.core.Instance instance,
double uniVariateAnomalyProbabilityThreshold,
double multiVariateAnomalyProbabilityThreshold,
int numberOfInstanceesForAnomaly) |
void |
learnFromInstance(weka.core.Instance inst) |
void |
setPerceptron(Perceptron perceptron) |
void |
setTargetMean(TargetMean targetMean) |
boolean |
tryToExpand(double splitConfidence,
double tieThreshold) |
void |
updateStatistics(weka.core.Instance instance) |
computeHoeffdingBound, computeProbability, debug, getAttributeObservers, getBestSuggestion, getInstancesSeen, getNodeStatistics, getPrediction, getSplitIndex, getStatisticsBranchSplit, getStatisticsNewRuleActiveLearningNode, getStatisticsOtherBranchSplit, learnFromInstance, newNumericClassObserver, setBestSuggestion, setSplitIndex, setStatisticsBranchSplit, setStatisticsNewRuleActiveLearningNode, setStatisticsOtherBranchSplit, updateChangeDetection, updatePageHinckleyTestcalcByteSize, disableAttribute, getBestSplitSuggestions, getWeightSeenAtLastSplitEvaluation, setWeightSeenAtLastSplitEvaluationcalcByteSizeIncludingSubtree, calculatePromise, describeSubtree, filterInstanceToLeaf, getClassVotes, getDescription, getObservedClassDistribution, isLeaf, observedClassDistributionIsPure, subtreeDepthcopy, copy, measureByteSize, measureByteSize, toStringprotected Perceptron perceptron
protected TargetMean targetMean
public RuleActiveRegressionNode(double[] initialClassObservations)
public RuleActiveRegressionNode()
public RuleActiveRegressionNode(Rule.Builder builder)
public Perceptron getPerceptron()
public void setPerceptron(Perceptron perceptron)
public TargetMean getTargetMean()
public void setTargetMean(TargetMean targetMean)
public void updateStatistics(weka.core.Instance instance)
updateStatistics in class RuleActiveLearningNodepublic double[] getPrediction(weka.core.Instance instance,
int predictionMode)
getPrediction in class RuleActiveLearningNodepublic double getNormalizedPrediction(weka.core.Instance instance)
public int getLearnerToUse(weka.core.Instance instance,
int predMode)
getLearnerToUse in class RuleActiveLearningNodepublic double computeSD(double squaredVal,
double val,
long size)
public double computeError(weka.core.Instance instance)
computeError in class RuleActiveLearningNodepublic boolean isAnomaly(weka.core.Instance instance,
double uniVariateAnomalyProbabilityThreshold,
double multiVariateAnomalyProbabilityThreshold,
int numberOfInstanceesForAnomaly)
isAnomaly in class RuleActiveLearningNodeprotected void debuganomaly(weka.core.Instance instance,
double uni,
double multi,
double probability)
public void initialize(RuleActiveLearningNode oldLearningNode)
initialize in class RuleActiveLearningNodepublic double[] getSimplePrediction()
getSimplePrediction in class RuleActiveLearningNodepublic boolean tryToExpand(double splitConfidence,
double tieThreshold)
tryToExpand in class RuleActiveLearningNodepublic void learnFromInstance(weka.core.Instance inst)
learnFromInstance in class RuleActiveLearningNodepublic AttributeSplitSuggestion[] getBestSplitSuggestions(SplitCriterion criterion)
public double getWeightSeen()
getWeightSeen in class HoeffdingTree.ActiveLearningNodepublic double getCurrentError()
getCurrentError in class RuleActiveLearningNodeCopyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.