Package | Description |
---|---|
moa.cluster | |
moa.clusterers | |
moa.clusterers.clustream | |
moa.clusterers.clustree | |
moa.clusterers.denstream | |
moa.clusterers.macro | |
moa.clusterers.streamkm |
Modifier and Type | Class and Description |
---|---|
class |
CFCluster |
class |
SphereCluster
A simple implementation of the
Cluster interface representing
spherical clusters. |
Modifier and Type | Method and Description |
---|---|
Cluster |
Clustering.get(int index)
remove a cluster from the clustering
|
Modifier and Type | Method and Description |
---|---|
AutoExpandVector<Cluster> |
Clustering.getClustering() |
AutoExpandVector<Cluster> |
Clustering.getClusteringCopy() |
Modifier and Type | Method and Description |
---|---|
void |
Clustering.add(Cluster cluster)
add a cluster to the clustering
|
Constructor and Description |
---|
Clustering(Cluster[] clusters) |
Constructor and Description |
---|
Clustering(AutoExpandVector<Cluster> clusters) |
Modifier and Type | Method and Description |
---|---|
static Clustering |
KMeans.kMeans(Cluster[] centers,
List<? extends Cluster> data)
This kMeans implementation clusters a big number of microclusters
into a smaller amount of macro clusters.
|
Modifier and Type | Method and Description |
---|---|
static Clustering |
KMeans.kMeans(Cluster[] centers,
List<? extends Cluster> data)
This kMeans implementation clusters a big number of microclusters
into a smaller amount of macro clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
ClustreamKernel |
Modifier and Type | Method and Description |
---|---|
protected static Clustering |
WithKmeans.kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data)
(The Actual Algorithm) k-means of (micro)clusters, with specified initialization points.
|
static Clustering |
Clustream.kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data) |
Modifier and Type | Method and Description |
---|---|
protected static Clustering |
WithKmeans.kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data)
(The Actual Algorithm) k-means of (micro)clusters, with specified initialization points.
|
static Clustering |
Clustream.kMeans(int k,
Cluster[] centers,
List<? extends Cluster> data) |
static Clustering |
Clustream.kMeans(int k,
List<? extends Cluster> data) |
Modifier and Type | Class and Description |
---|---|
class |
ClusKernel
Representation of an Entry in the tree
|
Modifier and Type | Class and Description |
---|---|
class |
MicroCluster |
Modifier and Type | Class and Description |
---|---|
class |
NonConvexCluster |
Modifier and Type | Method and Description |
---|---|
Cluster |
Point.toCluster() |
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.