Modifier and Type | Class and Description |
---|---|
class |
AbstractClassifier
Abstract Classifier.
|
Modifier and Type | Method and Description |
---|---|
Classifier |
Classifier.copy()
Produces a copy of this classifier.
|
Classifier |
AbstractClassifier.copy() |
Classifier[] |
Classifier.getSubClassifiers()
Gets the classifiers of this ensemble.
|
Classifier[] |
AbstractClassifier.getSubClassifiers() |
Modifier and Type | Class and Description |
---|---|
class |
ActiveClassifier
Active learning setting for evolving data streams.
|
Modifier and Type | Field and Description |
---|---|
Classifier |
ActiveClassifier.classifier |
Modifier and Type | Class and Description |
---|---|
class |
NaiveBayes
Naive Bayes incremental learner.
|
class |
NaiveBayesMultinomial
Class for building and using a multinomial Naive
Bayes classifier.
|
Modifier and Type | Class and Description |
---|---|
class |
DriftDetectionMethodClassifier
Class for handling concept drift datasets with a wrapper on a
classifier.
|
class |
SingleClassifierDrift
Class for handling concept drift datasets with a wrapper on a
classifier.
|
Modifier and Type | Field and Description |
---|---|
protected Classifier |
DriftDetectionMethodClassifier.classifier |
protected Classifier |
DriftDetectionMethodClassifier.newclassifier |
Modifier and Type | Class and Description |
---|---|
class |
MajorityClass
Majority class learner.
|
class |
NoChange
NoChange class classifier.
|
class |
SGD
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
|
class |
SGDMultiClass
Implements stochastic gradient descent for learning various linear models (binary class SVM, binary class logistic regression and linear regression).
|
class |
SPegasos
Implements the stochastic variant of the Pegasos
(Primal Estimated sub-GrAdient SOlver for SVM) method of Shalev-Shwartz et
al.
|
Modifier and Type | Class and Description |
---|---|
class |
kNN
k Nearest Neighbor.
|
class |
kNNwithPAW
k Nearest Neighbor ADAPTIVE with PAW.
|
class |
kNNwithPAWandADWIN
k Nearest Neighbor ADAPTIVE with ADWIN+PAW.
|
Modifier and Type | Class and Description |
---|---|
class |
AccuracyUpdatedEnsemble
The revised version of the Accuracy Updated Ensemble as proposed by
Brzezinski and Stefanowski in "Reacting to Different Types of Concept Drift:
The Accuracy Updated Ensemble Algorithm", IEEE Trans.
|
class |
AccuracyWeightedEnsemble
The Accuracy Weighted Ensemble classifier as proposed by Wang et al.
|
class |
ADACC
Anticipative and Dynamic Adaptation to Concept Changes.
|
class |
DACC
Dynamic Adaptation to Concept Changes.
|
class |
LeveragingBag
Leveraging Bagging for evolving data streams using ADWIN.
|
class |
LimAttClassifier
Ensemble Combining Restricted Hoeffding Trees using Stacking.
|
class |
OCBoost
Online Coordinate boosting for two classes evolving data streams.
|
class |
OnlineAccuracyUpdatedEnsemble
The online version of the Accuracy Updated Ensemble as proposed by
Brzezinski and Stefanowski in "Combining block-based and online methods
in learning ensembles from concept drifting data streams", Information Sciences, 2014.
|
class |
OnlineSmoothBoost
Incremental on-line boosting with Theoretical Justifications of Shang-Tse Chen,
Hsuan-Tien Lin and Chi-Jen Lu.
|
class |
OzaBag
Incremental on-line bagging of Oza and Russell.
|
class |
OzaBagAdwin
Bagging for evolving data streams using ADWIN.
|
class |
OzaBagASHT
Bagging using trees of different size.
|
class |
OzaBoost
Incremental on-line boosting of Oza and Russell.
|
class |
OzaBoostAdwin
Boosting for evolving data streams using ADWIN.
|
class |
RandomRules |
class |
TemporallyAugmentedClassifier
Include labels of previous instances into the training data
|
class |
WeightedMajorityAlgorithm
Weighted majority algorithm for data streams.
|
class |
WEKAClassifier
Class for using a classifier from WEKA.
|
Modifier and Type | Field and Description |
---|---|
protected Classifier |
TemporallyAugmentedClassifier.baseLearner |
protected Classifier |
AccuracyUpdatedEnsemble.candidate
Candidate classifier.
|
protected Classifier |
AccuracyWeightedEnsemble.candidateClassifier |
protected Classifier[] |
OzaBagAdwin.ensemble |
protected Classifier[] |
LimAttClassifier.ensemble |
protected Classifier[] |
DACC.ensemble
Ensemble of classifiers
|
protected Classifier[] |
LeveragingBag.ensemble |
protected Classifier[] |
RandomRules.ensemble |
protected Classifier[] |
OnlineSmoothBoost.ensemble |
protected Classifier[] |
OCBoost.ensemble |
protected Classifier[] |
OzaBoost.ensemble |
protected Classifier[] |
OzaBoostAdwin.ensemble |
protected Classifier[] |
AccuracyWeightedEnsemble.ensemble |
protected Classifier[] |
WeightedMajorityAlgorithm.ensemble |
protected Classifier[] |
OzaBag.ensemble |
protected Classifier[] |
AccuracyUpdatedEnsemble.learners
Ensemble classifiers.
|
protected Classifier[] |
AccuracyWeightedEnsemble.storedLearners |
Modifier and Type | Method and Description |
---|---|
protected Classifier |
AccuracyWeightedEnsemble.addToStored(Classifier newClassifier,
double newClassifiersWeight)
Adds a classifier to the storage.
|
protected Classifier |
AccuracyUpdatedEnsemble.addToStored(Classifier newClassifier,
double newClassifiersWeight)
Adds a classifier to the storage.
|
Classifier[] |
OzaBagAdwin.getSubClassifiers() |
Classifier[] |
LimAttClassifier.getSubClassifiers() |
Classifier[] |
DACC.getSubClassifiers() |
Classifier[] |
LeveragingBag.getSubClassifiers() |
Classifier[] |
RandomRules.getSubClassifiers() |
Classifier[] |
OnlineSmoothBoost.getSubClassifiers() |
Classifier[] |
OCBoost.getSubClassifiers() |
Classifier[] |
OzaBoost.getSubClassifiers() |
Classifier[] |
OzaBoostAdwin.getSubClassifiers() |
Classifier[] |
AccuracyWeightedEnsemble.getSubClassifiers() |
Classifier[] |
WeightedMajorityAlgorithm.getSubClassifiers() |
Classifier[] |
AccuracyUpdatedEnsemble.getSubClassifiers() |
Classifier[] |
OzaBag.getSubClassifiers() |
Classifier[] |
OnlineAccuracyUpdatedEnsemble.getSubClassifiers() |
Modifier and Type | Method and Description |
---|---|
protected Classifier |
AccuracyWeightedEnsemble.addToStored(Classifier newClassifier,
double newClassifiersWeight)
Adds a classifier to the storage.
|
protected Classifier |
AccuracyUpdatedEnsemble.addToStored(Classifier newClassifier,
double newClassifiersWeight)
Adds a classifier to the storage.
|
protected double |
AccuracyWeightedEnsemble.computeCandidateWeight(Classifier candidate,
weka.core.Instances chunk,
int numFolds)
Computes the weight of a candidate classifier.
|
protected double |
AccuracyUpdatedEnsemble.computeMse(Classifier learner,
weka.core.Instances chunk)
Computes the MSE of a learner for a given chunk of examples.
|
protected double |
AccuracyWeightedEnsemble.computeWeight(Classifier learner,
weka.core.Instances chunk)
Computes the weight of a given classifie.
|
Constructor and Description |
---|
OnlineAccuracyUpdatedEnsemble.ClassifierWithMemory(Classifier classifier,
int windowSize) |
Modifier and Type | Class and Description |
---|---|
class |
HoeffdingTreeClassifLeaves
Hoeffding Tree that have a classifier at the leaves.
|
class |
MajorityLabelset
Majority Labelset classifier.
|
class |
MEKAClassifier
Class for using a MEKA classifier.
|
class |
MultilabelHoeffdingTree
Hoeffding Tree for classifying multi-label data.
|
Modifier and Type | Field and Description |
---|---|
protected Classifier |
HoeffdingTreeClassifLeaves.LearningNodeClassifier.classifier |
Modifier and Type | Method and Description |
---|---|
Classifier |
MultilabelHoeffdingTree.MultilabelLearningNodeClassifier.getClassifier() |
Classifier |
HoeffdingTreeClassifLeaves.LearningNodeClassifier.getClassifier() |
Modifier and Type | Method and Description |
---|---|
protected HoeffdingTree.LearningNode |
MultilabelHoeffdingTree.newLearningNode(double[] initialClassObservations,
Classifier cl) |
protected HoeffdingTree.LearningNode |
HoeffdingTreeClassifLeaves.newLearningNode(double[] initialClassObservations,
Classifier cl) |
Constructor and Description |
---|
HoeffdingTreeClassifLeaves.LearningNodeClassifier(double[] initialClassObservations,
Classifier cl,
HoeffdingTreeClassifLeaves ht) |
MultilabelHoeffdingTree.MultilabelLearningNodeClassifier(double[] initialClassObservations,
Classifier cl,
MultilabelHoeffdingTree ht) |
Modifier and Type | Class and Description |
---|---|
class |
MLOzaBag
OzaBag for Multi-label data.
|
class |
MLOzaBagAdwin
MLOzaBagAdwin: Changes the way to compute accuracy as an input for Adwin
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAMRules |
class |
AMRulesRegressor |
class |
RuleClassifier
This classifier learn ordered and unordered rule set from data stream.
|
class |
RuleClassifierNBayes
This classifier learn ordered and unordered rule set from data stream with naive Bayes learners.
|
Modifier and Type | Class and Description |
---|---|
class |
FadingTargetMean |
class |
Perceptron |
class |
TargetMean |
Modifier and Type | Class and Description |
---|---|
class |
AdaHoeffdingOptionTree
Adaptive decision option tree for streaming data with adaptive Naive
Bayes classification at leaves.
|
class |
ASHoeffdingTree
Adaptive Size Hoeffding Tree used in Bagging using trees of different size.
|
class |
DecisionStump
Decision trees of one level.
Parameters: |
class |
FIMTDD |
class |
HoeffdingAdaptiveTree
Hoeffding Adaptive Tree for evolving data streams.
|
class |
HoeffdingOptionTree
Hoeffding Option Tree.
|
class |
HoeffdingTree
Hoeffding Tree or VFDT.
|
class |
LimAttHoeffdingTree
Hoeffding decision trees with a restricted number of attributes for data
streams.
|
class |
ORTO |
class |
RandomHoeffdingTree
Random decision trees for data streams.
|
Constructor and Description |
---|
LearningEvaluation(ClassificationPerformanceEvaluator cpe,
Classifier model) |
LearningEvaluation(Measurement[] evaluationMeasurements,
ClassificationPerformanceEvaluator cpe,
Classifier model) |
Modifier and Type | Class and Description |
---|---|
class |
ChangeDetectorLearner
Class for detecting concept drift and to be used as a learner.
|
Constructor and Description |
---|
EvaluateModel(Classifier model,
InstanceStream stream,
ClassificationPerformanceEvaluator evaluator,
int maxInstances) |
EvaluateModelRegression(Classifier model,
InstanceStream stream,
ClassificationPerformanceEvaluator evaluator,
int maxInstances) |
LearnModel(Classifier learner,
InstanceStream stream,
int maxInstances,
int numPasses) |
LearnModelRegression(Classifier learner,
InstanceStream stream,
int maxInstances,
int numPasses) |
Modifier and Type | Field and Description |
---|---|
protected Classifier |
MOA.m_ActualClassifier
the actual moa classifier to use for learning.
|
Copyright © 2014 University of Waikato, Hamilton, NZ. All Rights Reserved.